Signal Processing Toolbox™
Reference

i
A N
Y.
A
-

MATLAB

R2017b -) MathWorks:

X o)

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services
User community: www.mathworks.com/matlabcentral
Technical support: www.mathworks.com/support/contact us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Signal Processing Toolbox™ Reference
© COPYRIGHT 1988-2017 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

1988

November 1997
January 1998
September 2000
July 2002
December 2002
June 2004
October 2004
March 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017

First printing
Second printing
Third printing
Fourth printing
Fifth printing
Online only
Online only
Online only
Online only
Online only
Sixth printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New

Revised

Revised

Revised for Version 5.0 (Release 12)
Revised for Version 6.0 (Release 13)
Revised for Version 6.1 (Release 13+)
Revised for Version 6.2 (Release 14)
Revised for Version 6.2.1 (Release 14SP1)
Revised for Version 6.2.1 (Release 14SP2)
Revised for Version 6.4 (Release 14SP3)
Revised for Version 6.5 (Release 2006a)
Revised for Version 6.6 (Release 2006b)
Revised for Version 6.7 (Release 2007a)
Revised for Version 6.8 (Release 2007b)
Revised for Version 6.9 (Release 2008a)
Revised for Version 6.10 (Release 2008b)
Revised for Version 6.11 (Release 2009a)
Revised for Version 6.12 (Release 2009b)
Revised for Version 6.13 (Release 2010a)
Revised for Version 6.14 (Release 2010b)
Revised for Version 6.15 (Release 2011a)
Revised for Version 6.16 (Release 2011b)
Revised for Version 6.17 (Release 2012a)
Revised for Version 6.18 (Release 2012b)
Revised for Version 6.19 (Release 2013a)
Revised for Version 6.20 (Release 2013b)
Revised for Version 6.21 (Release 2014a)
Revised for Version 6.22 (Release 2014b)
Revised for Version 7.0 (Release 2015a)
Revised for Version 7.1 (Release 2015b)
Revised for Version 7.2 (Release 2016a)
Revised for Version 7.3 (Release 2016b)
Revised for Version 7.4 (Release 2017a)
Revised for Version 7.5 (Release 2017b)

Functions — Alphabetical List

1]

Functions — Alphabetical List

1 Functions — Alphabetical List

abs

Absolute value (magnitude)

Description

abs is a MATLAB® function.

Examples

Magnitude of the DFT of a Sequence

Generate a signal composed of two sinusoids sampled at 100 Hz. Specify the sinusoid
frequencies as 15 and 40 Hz. Compute the DFT of the sequence.

(0:99)/100; o
sin (2*pi*15*t) + sin(2*pi*40*t); %
fft(x); %
abs (y);

3 X
I

Plot the magnitude of the DFT.

f = 0:50; %
m = m(l:51); %
stem (f, m)

ylabel 'DFT magnitude'
xlabel 'Frequency (Hz)'

Time vector
Signal

DFT of x
Magnitude

Frequency vector
Unique magnitudes

abs

DFT magnitude

60 T T T T T T T T T

50 i i y

B
-
T
1

(%]

=
T
i

3

=]
T
1

10 T

P ——
0 5 10 15 20 25 30 3 40 45 50
Frequency (Hz)

Introduced before R2006a

1-3

1 Functions — Alphabetical List

ac2poly

Convert autocorrelation sequence to prediction polynomial

Syntax

a = ac2poly(r)
[a,efinal] = ac2poly(r)

Description

a = ac2poly(r) finds the linear prediction FIR filter polynomial, a, corresponding to
the autocorrelation sequence r. a is the same length as r, and a (1) = 1. The polynomial
represents the coefficients of a prediction filter that outputs a signal with autocorrelation
sequence approximately equal to r.

[a,efinal] = ac2poly(r) returns the final prediction error, efinal, determined by
running the filter for length (r) steps.

Examples

Prediction Polynomial from Autocorrelation Sequence

Given an autocorrelation sequence, r, determine the equivalent linear prediction filter
polynomial and the final prediction error.

r = [5.0000 -1.5450 -3.9547 3.9331 1.4681 -4.7500];

[a,efinal] = ac2poly(r)

a =

1.0000 0.6147 0.9898 0.0004 0.0034 -0.0077

efinal = 0.1791

ac2poly

Tips
You can apply this function to real or complex data.

References

[1] Kay, Steven M. Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice-Hall,
1988.

See Also
ac2rc | poly2ac | rc2poly

Introduced before R2006a

1-5

1 Functions — Alphabetical List

ac2rc

Convert autocorrelation sequence to reflection coefficients

Syntax

[k, r0] = ac2rc(r)
Description
[k, r0] = ac2rc(r) finds the reflection coefficients, k, corresponding to the

autocorrelation sequence r. r0O contains the zero-lag autocorrelation. If r is a matrix
where the columns are separate channels of autocorrelation sequences, r0 contains the
zero-lag autocorrelation coefficient for each channel. These reflection coefficients can be
used to specify the lattice prediction filter that produces a sequence with approximately
the same autocorrelation sequence as the given sequence r.

Tips
You can apply this function to real or complex data.

References

[1] Kay, Steven M. Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice-Hall,
1988.

See Also

ac2poly | poly2rc | rc2ac

Introduced before R2006a

alignsignals

alignsignals

Align two signals by delaying earliest signal

Syntax

[Xa,Ya] = alignsignals (X,Y)

[Xa,Ya] = alignsignals (X,Y,maxlaqg)

[Xa,Ya] = alignsignals(X,Y,maxlag, 'truncate')

[Xa,Ya,D] = alignsignals()

Description

[Xa,Ya] = alignsignals (X,Y) estimates the delay, D, between the two input

signals, X and Y, and returns the aligned signals, Xa and Ya.

+ If Y is delayed with respect to X, then D is positive and X is delayed by D samples.
+ If Y is advanced with respect to X, then D is negative and Y is delayed by —D samples.

Delays in X or Y can be introduced by prepending zeros.

[Xa,Ya] = alignsignals (X,Y,maxlag) uses maxlag as the maximum window size
to find the estimated delay, D, between the two input signals, X and Y. It returns the
aligned signals, Xa and Ya.

[Xa,Ya] = alignsignals (X,Y,maxlag, 'truncate') keeps the lengths of the
aligned signals, Xa and Ya, the same as those of the input signals, X and Y, respectively.

+ If the estimated delay, D, is positive, then D zeros are prepended to X and the last D
samples of X are truncated.

+ If the estimated delay, D, is negative, then —D zeros are prepended to Y and the last —
D samples of Y are truncated.

Notes X and Y are row or column vectors of length Ly and Ly, respectively.

1 Functions — Alphabetical List

+ If D> Ly, then Xa consists of Ly zeros. All samples of X are lost.

« If -D > Ly, then Ya consists of Ly zeros. All samples of Y are lost.

To avoid assigning a specific value to maxlag when using the 'truncate’ option, set
maxlagto [].

[Xa,Ya,D] = alignsignals() returns the estimated delay, D. This syntax can
include any of the input arguments used in previous syntaxes.

Examples

Align Two Signals Where the First Signal Lags by Three Samples
Align signal Y with respect to X by advancing it three samples.

Create two signals, X and Y. X is exactly the same as Y, except X has three leading zeros
and one additional following zero. Align the two signals.

X=[000123001];
Y =1[12 3 0];

[Xa,Ya] = alignsignals(X,Y)
Xa =

0 0 0 1 2 3 0 0
Ya =

(((1 2 3 (

Align Two Signals Where the Second Signal Lags by Two Samples

Align signal X when Y is delayed with respect to X by two samples.

alignsignals

Create two signals, X and Y. Y is exactly the same as X, except Y has two leading zeros.
Align the two signals.

X =1[12 3];
Y = [0012 3];
maxlag = 2;
[Xa,Ya,D] = alignsignals (X, Y,maxlagqg)
Xa =
0 0 1 2 3
Ya =
0 0 2 3
D =2

Align Two Signals Where the Second Signal Is Noisy
Align signal Y with respect to X, despite the fact that Y is a noisy signal.

Create two signals, X and Y. Y is exactly the same as X with some noise added to it. Align
the two signals.

X=[001230];
Y = [0.02 0.12 1.08 2.21 2.95 -0.09];

[Xa,Ya,D] = alignsignals(X,Y)
Xa =
0 0 1 2 3 0
Ya =
0.0200 0.1200 1.0800 2.2100 2.9500 -0.0900

1-9

1 Functions — Alphabetical List

1-10

You do not need to change the input signals to produce the output signals. The delay D is
Zero.

Align Two Signals Using the 'truncate’' Option
Invoke the 'truncate' option when calling the alignsignals function.

Create two signals, X and Y. Y is exactly the same as X, except Y has two leading zeros.
Align the two signals, applying the 'truncate’' directive.

X =1[1 2 3];
Y =[0012 3];

[Xa,Ya,D] = alignsignals(X,Y, [], 'truncate')
Xa =

0 0 1
Ya =

Observe that the output signal xa has a length of 3, the same length as input signal X.

In the case where using the 'truncate' option ends up truncating all the original data
of X, a warning is issued. To make alignsignals issue such a warning, run the
following example.

Y =1[000012 3];

[Xa,Ya,D] = alignsignals(X,Y, [], "truncate')

Warning: All original data in the first input X has been truncated because the length

Xa =

C

alignsignals

Align a Signal and a Periodic Repetition of It

Align signal Y with respect to X, despite the fact that Y is a periodic repetition of X.
Return the smallest possible delay.

Create two signals, X and Y. Y consists of two copies of the nonzero portion of X separated
by zeros. Align the two signals.

X =[012 3];
Y=[1230000123¢00];

[Xa,Ya,D] = alignsignals(X,Y)
Xa =
0 1 2 3
Ya =
0 1 2 3 0 0 0 0 1 2 3 0
D = -1
Input Arguments

X — First input signal
vector of numeric values

1-11

1 Functions — Alphabetical List

1-12

First input signal, specified as a numeric vector of length LX.
Example: [1 2 3]

Data Types: single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 |
uint32 | uinte4
Complex Number Support: Yes

Y — Second input signal
vector of numeric values

Second input signal, specified as a numeric vector of length LY.
Example: [0 0 1 2 3]

Data Types: single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 |
uint32 | uinte4
Complex Number Support: Yes

maxlag — Maximum window size or lag
scalar integer | []

Maximum window size, or lag, specified as an integer-valued scalar. By default, maxlag
is equal to max (length (X), length (Y))-1. If maxlagis input as [], it is replaced by
the default value. If max1lag is negative, it is replaced by its absolute value. If maxlag is
not integer-valued, or is complex, Inf, or NaN, then alignsignals returns an error.

Example: 2

Data Types: single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 |
uint32 | uinté64

Output Arguments

Xa — Aligned first signal
vector of numeric values

Aligned first signal, returned as a numeric vector that is aligned with the second output
argument, Ya. If input argument X is a row vector, then Xa is also a row vector. If input
argument X is a column vector, then Xa is also a column vector. If you specify the
"truncate' option and the estimated delay D is positive, then Xa is equivalent to the
input signal X with D zeros prepended to it and its last D samples truncated.

alignsignals

Ya — Aligned second signal
vector of numeric values

Aligned second signal, returned as a numeric vector that is aligned with the first output
argument, Xa. If input argument Y is a row vector, then Ya is also a row vector. If input
argument Y is a column vector, then Ya is also a column vector. If you specify the
"truncate' option and the estimated delay D is negative, then Ya is equivalent to the
input signal Y with —D zeros prepended to it and its last —D samples truncated.

D — Estimated delay between input signals
scalar integer

Estimated delay between input signals, returned as a scalar integer. This integer
represents the number of samples by which the two input signals, X and Y are offset.

+ If Y is delayed with respect to X, then D is positive and X is delayed by D samples.

+ If Yy is advanced with respect to X, then D is negative and Y is delayed by —D samples.
+ If x and Y are already aligned, then D is zero and neither X nor Y are delayed.

If you specify a value for the input argument maxlag, then D must be less than or equal
tomaxlag.

Algorithms

* You can find the theory on delay estimation in the specification of the finddelay
function (see “Algorithms” on page 1-858).

* The alignsignals function uses the estimated delay D to delay the earliest signal
such that the two signals have the same starting point.

+ As specified for the finddelay function, the pair of signals need not be exact delayed
copies of each other. However, the signals can be successfully aligned only if there is
sufficient correlation between them.

For more information on estimating covariance and correlation functions, see [1].

References

[1] Orfanidis, Sophocles J. Optimum Signal Processing. An Introduction. 2nd Ed.
Englewood Cliffs, NdJ: Prentice-Hall, 1996.

1-13

1 Functions — Alphabetical List

1-14

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™,

See Also

dtw | edr | finddelay | findsignal | xcorr

angle

angle

Phase angle

Description

angle is a MATLAB function.

Examples

Magnitude and Phase of Complex Number

Create an arbitrary complex number. Compute its magnitude and phase.

z = 42%exp (19*0.1234)

phs = angle(z)

phs = 0.1234

FFT Phase

Generate a signal that consists of two sinusoids of frequencies 15 Hz and 40 Hz. The
signal is sampled at 100 Hz for one second.

fs = 100;
t = 0:1/fs:1-1/fs;
sin (2*pi*15*t) + sin(2*pi*40*t);

1-15

1 Functions — Alphabetical List

Compute the discrete Fourier transform of the signal. Plot the magnitude of the
transform as a function of frequency.

y = fft(x);

ly = length(y);

f = (-1ly/2:1y/2-1)/1y*fs;
stem (f,abs (fftshift(y)))
xlabel 'Frequency (Hz)'
ylabel '|[y|'

60 T T T T T T T T T

50 ip i Q Q .

40 | -

201 7

50 40 30 -20 -10 0 10 20 30 40 50
Frequency (Hz)

Find the phase of the transform and plot it as a function of frequency.

1-16

angle

phs = angle (fftshift(y));

plot (f,phs/pi)

xlabel 'Frequency (Hz)'
ylabel 'Phase / \pi'
grid

0.8 r 7
06 7
W

0.4 7

0.2 7

Fhase / «

o
(=3}

_1 i i i i i i i i i

-50 40 30 -20 10 0 10 20 30 40 50
Frequency (Hz)

See Also

abs | £ft | unwrap

1-17

1 Functions — Alphabetical List

Introduced before R2006a

1-18

arburg

arburg

Autoregressive all-pole model parameters — Burg’s method

Syntax

= arburg(x,p)
] = arburg(x,p)

a,e
a,e,rc] = arburg(x,p)

Description

a = arburg(x,p) returns the normalized autoregressive (AR) parameters
corresponding to a model of order p for the input array, x. If x is a vector, then the output
array, a, is a row vector. If x is a matrix, then the parameters along the nth row of a
model the nth column of x. a has p + 1 columns. p must be less than the number of
elements (or rows) of x.

[a,e] = arburg(x,p) returns the estimated variance, e, of the white noise input.
[a,e,rc] = arburg(x,p) returns the reflection coefficients in rc.
Examples

Parameter Estimation Using Burg's Method

Use a vector of polynomial coefficients to generate an AR(4) process by filtering 1024
samples of white noise. Reset the random number generator for reproducible results. Use
Burg's method to estimate the coefficients.

rng default

A = [1 -2.7607 3.8106 -2.6535 0.9238];

1-19

1 Functions — Alphabetical List

1-20

y = filter(l1,A,0.2*randn(1024,1));
arcoeffs = arburg(y,4)
arcoeffs =

1.0000 -2.7743 3.8408 -2.6843 0.9360

Generate 50 realizations of the process, changing each time the variance of the input
noise. Compare the Burg-estimated variances to the actual values.

nrealiz = 50;
noisestdz = rand(l,nrealiz)+0.5;
randnoise = randn(1024,nrealiz);
for k = l:nrealiz
% filter(1,A,noisestdz (k) * randnoise(:,k));

[arcoeffs,noisevar (k)] = arburg(y,4):;
end

plot (noisestdz.”2,noisevar, '*")
title ('Noise Variance')

xlabel ('Input")

ylabel ('Estimated")

arburg

Estimated

MNoise Variance

25 . : . :
2t]
¥
E 3
* ¥
15¢ ¥¥ -
* %
%, #¥%
. *
1 - -
*
#
05k e ¥ 1
D 1 1 1 1
0 05 1 15 2 25

Input

Repeat the procedure using arburg's multichannel syntax.

realiz = bsxfun (@times,noisestdz, randnoise);

Y = filter(1,A, realiz);
[coeffs,variances] = arburg(Y,4);

hold on

plot (noisestdz.”2,variances, 'o")

g = legend('Single channel loop', 'Multichannel');
g.Location = 'best';

1-21

1 Functions — Alphabetical List

1-22

MNoise Variance
25 . . . :

o 15} P -
g "»
£
= 'ﬂﬁﬁ'
i -ﬂe%ﬁ *

Tr * Single channel loop !

& 0 Multichannel
:
0.5 g * -
D i i i i
0 0.5 1 1.5 2 2.5
Input
Definitions
AR(p) Model

In an AR model of order p, the current output is a linear combination of the past p
outputs plus a white noise input. The weights on the p past outputs minimize the mean-
square prediction error of the autoregression. If y(n) is the current value of the output
and x(n) is a zero mean white noise input, the AR(p) model is:

arburg

p
y(n) + Z a(k)y(n—k) = x(n).
k=1

Reflection Coefficients

The reflection coefficients are the partial autocorrelation coefficients scaled by —1. The
reflection coefficients indicate the time dependence between y(n) and y(n — k) after
subtracting the prediction based on the intervening k& — 1 time steps.

Algorithms

The Burg method estimates the reflection coefficients and uses the reflection coefficients
to estimate the AR parameters recursively. You can find the recursion and lattice filter
relations describing the update of the forward and backward prediction errors in [1].

References

[1] Kay, Steven M. Modern Spectral Estimation: Theory and Application. Englewood
Cliffs, NdJ: Prentice Hall, 1988.

See Also

arcov | armcov | aryule | levinson | 1lpc

Topics
“Parametric Modeling”

Introduced before R2006a

1-23

1 Functions — Alphabetical List

1-24

arcov

Autoregressive all-pole model parameters — covariance method

Syntax

a = arcov(x,p)
[a,e] = arcov(x,p)

Description

a = arcov (x,p) uses the covariance method to fit a pth-order autoregressive (AR)
model to the input signal, x, which is assumed to be the output of an AR system driven
by white noise. This method minimizes the forward prediction error in the least-squares
sense. The output array, a, contains normalized estimates of the AR system parameters,
A(z), in descending powers of z. a has p + 1 columns. If x is a vector, then a is a row
vector. If a 1s a matrix, then the coefficients along the nth row of a model the nth column
of x.

[a,e] = arcov (x,p) returns the variance estimate, e, of the white noise input to the
AR model.

Examples

Parameter Estimation Using the Covariance Method

Use a vector of polynomial coefficients to generate an AR(4) process by filtering 1024
samples of white noise. Reset the random number generator for reproducible results. Use
the covariance method to estimate the coefficients.

rng default

A = [1 -2.7607 3.8106 -2.6535 0.9238];

arcov

y = filter(l1,A,0.2*randn(1024,1));
arcoeffs = arcov(y,4)
arcoeffs =

1.0000 -2.7746 3.8419 -2.6857 0.9367

Generate 50 realizations of the process, changing each time the variance of the input
noise. Compare the covariance-estimated variances to the actual values.

nrealiz = 50;
noisestdz = rand(l,nrealiz)+0.5;
randnoise = randn(1024,nrealiz);
for k = l:nrealiz
% filter(1,A,noisestdz (k) * randnoise(:,k));

[arcoeffs,noisevar (k)] = arcov(y,4);
end

plot (noisestdz.”2,noisevar, '*")
title ('Noise Variance')

xlabel ('Input")

ylabel ("Estimated")

1-25

1 Functions — Alphabetical List

MNoise Variance

25 . : : :
F¥
*
2r £]
* 5
¥
* *
o 15} #¥ -
£
= %
Wi FH
1_ -
¥
#*
05 f sk :
D i i i i
0 0.5 1 15 2 2.5

Input

Repeat the procedure using arcov's multichannel syntax.

realiz = bsxfun (@times, noisestdz, randnoise);

Y = filter(1,A,realiz);
[coeffs,variances] = arcov(Y,4);

hold on
plot (noisestdz.”2,variances, 'o")

g = legend('Single channel loop', 'Multichannel');
g.Location = 'best';

1-26

arcov

MNoise Variance

25
gl
&
2r & i
o *
¥
*

- 15¢ ¥ P -
: * 8
E
= #%
it A i

Tr * Single channel loop !

% = Multichannel
%
05 f g ® 1
D i i i i
0 0.5 1 15 2 25
Input
Definitions
AR(p) Model

Let y(n) be a wide-sense stationary random process obtained by filtering white noise of
variance e with the system function A(z). If Py(ef“’) is the power spectral density of y(n),
then

1-27

1 Functions — Alphabetical List

e e

‘A(ejw)‘2 =

P,(e/®) = 5
P .
1+) a(k)e IOk
k=1

Because the method characterizes the input data using an all-pole model, the correct
choice of the model order, p, is important.

See Also

arburg | armcov | aryule | 1pc | pcov | prony

Introduced before R2006a

1-28

armcov

armcov

Autoregressive all-pole model parameters — modified covariance method

Syntax

a = armcov (x,p)
[a,e] = armcov (x,p)

Description

a = armcov (x,p) uses the modified covariance method to fit a pth-order autoregressive
(AR) model to the input signal, x, which is assumed to be the output of an AR system
driven by white noise. This method minimizes the forward and backward prediction
errors in the least-squares sense. The output array, a, contains the normalized estimates
of the AR system parameters, A(z), in descending powers of z. a has p + 1 columns. If x is
a vector, then a is a row vector. If a is a matrix, then the coefficients along the nth row of
a model the nth column of x.

[a,e] = armcov (x,p) returns the variance estimate, e, of the white noise input to the
AR model.

Examples

Parameter Estimation Using the Modified Covariance Method

Use a vector of polynomial coefficients to generate an AR(4) process by filtering 1024
samples of white noise. Reset the random number generator for reproducible results. Use
the modified covariance method to estimate the coefficients.

rng default

A = [1 -2.7607 3.8106 -2.6535 0.9238];

1-29

1 Functions — Alphabetical List

1-30

y = filter(l1,A,0.2*randn(1024,1));
arcoeffs = armcov (y,4)
arcoeffs =

1.0000 -2.7741 3.8404 -2.6841 0.9360

Generate 50 realizations of the process, changing each time the variance of the input
noise. Compare the modified-covariance-estimated variances to the actual values.

nrealiz = 50;
noisestdz = rand(l,nrealiz)+0.5;
randnoise = randn(1024,nrealiz);
for k = l:nrealiz
% filter(1,A,noisestdz (k) * randnoise(:,k));

[arcoeffs,noisevar (k)] = armcov(y,4);
end

plot (noisestdz.”2,noisevar, '*")
title ('Noise Variance')

xlabel ('Input")

ylabel ('Estimated")

armcov

Estimated

MNoise Variance

2.5 . : . ;
2_ -
¥
¥
* ¥
151 #¥ -
* ¥
%, #¥%
W K
1 - -
*
#
0.5 F ¥ -
D 1 1 1 1
0 05 1 15 2 25

Input

Repeat the procedure using armcov's multichannel syntax.

realiz = bsxfun (@times,noisestdz, randnoise);

Y = filter(1,A, realiz);

[coeffs,variances] = armcov(Y,4);

hold on

plot (noisestdz.”2,variances, 'o")

g = legend('Single channel loop', 'Multichannel');
g.Location = 'best';

1-31

1 Functions — Alphabetical List

MNoise Variance

25
$44
2t # " 1
o *
¥
*

o 15} B -
g °»
E
E= 'ﬂﬁﬁ'
e H

Tr * Single channel loop !

& = Multichannel
:
05t g ® 1
D i i i i
0 0.5 1 1.5 2 25
Input
Definitions
AR(p) Model

Let y(n) be a wide-sense stationary random process obtained by filtering a white noise
input with variance e with the system function A(z). If Py(efa’) is the power spectral
density of y(n), then

1-32

armcov

e e

‘A(ejw)‘2 =

P,(e/®) = 5
P .
1+) a(k)e IOk
k=1

Because the method characterizes the input data using an all-pole model, the correct
choice of the model order, p, is important.

See Also

arburg | arcov | aryule | 1lpc | pmcov | prony

Introduced before R2006a

1-33

1 Functions — Alphabetical List

aryule

Autoregressive all-pole model parameters — Yule-Walker method

Syntax

a = aryule (x,p)
[a,e] = aryule(x,p)
[a,e,rc] = aryule(x,p)

Description

a = aryule (x,p) returns the normalized autoregressive (AR) parameters
corresponding to a model of order p for the input array, x. If x is a vector, then the output
array, a, 1s a row vector. If x is a matrix, then the parameters along the nth row of a
model the nth column of x. a has p + 1 columns. p must be less than the number of
elements (or rows) of x.

[a,e] = aryule (x,p) returns the estimated variance, e, of the white noise input.
[a,e,rc] = aryule (x,p) returns the reflection coefficients in rc.
Examples

Parameter Estimation Using the Yule-Walker Method

Use a vector of polynomial coefficients to generate an AR(4) process by filtering 1024
samples of white noise. Reset the random number generator for reproducible results. Use
the Yule-Walker method to estimate the coefficients.

rng default

A = [1 -2.7607 3.8106 -2.6535 0.9238];

1-34

aryule

y = filter(l1,A,0.2*randn(1024,1));
arcoeffs = aryule(y,4)
arcoeffs =

1.0000 -2.7262 3.7296 -2.5753 0.8927

Generate 50 realizations of the process, changing each time the variance of the input
noise. Compare the Yule-Walker-estimated variances to the actual values.

nrealiz = 50;
noisestdz = rand(l,nrealiz)+0.5;
randnoise = randn(1024,nrealiz);
for k = l:nrealiz
% filter(1,A,noisestdz (k) * randnoise(:,k));

[arcoeffs,noisevar (k)] = aryule(y,4);
end

plot (noisestdz.”2,noisevar, '*")
title ('Noise Variance')

xlabel ('Input")

ylabel ("Estimated")

1-35

1 Functions — Alphabetical List

1-36

Estimated

MNoise Variance

45 T T T T

40 | *

35
30 r

251

151 #* * *
¥
10 a; *
*
L * % ¥ * S
5
g ¥ ¥ ¥

* **
F o wik * *

*

]

0 0.5 1 1.5 2
Input

Repeat the procedure using aryule's multichannel syntax.

realiz = bsxfun (@times,noisestdz, randnoise);

Y = filter(1,A, realiz);

[coeffs,variances] = aryule(Y,4);

hold on
plot (noisestdz.”2,variances, 'o")

g = legend('Single channel loop', 'Multichannel');
g.Location = 'best';

2.5

aryule

Estimated

MNoise Variance

45 T T T T
40 | # .
Single channel loop
B r o Muttichannel 1
%
30 b .
25 + .
20 F & .
15 % * . ™ |
%
0r $ #® & i
®
L & & E %]
? % % * g & ¥® N
& e * *
0 #ﬁ- 'ﬂ'E-.%6 ¥ pad . .
0 0.5 1 15 2 25
Input

Estimate Model order Using Decay of Reflection Coefficients

Use a vector of polynomial coefficients to generate an AR(2) process by filtering 1024
samples of white noise. Reset the random number generator for reproducible results.

rng default
y = filter(1,[1 -0.75 0.5],0.2*randn (1024,1));

Use the Yule-Walker method to fit an AR(10) model to the process. Output and plot the
reflection coefficients.

1-37

1 Functions — Alphabetical List

[ar coeffs,NoiseVariance,reflect coeffs] = aryule(y,10);
stem(reflect coeffs)

axis([-0.05 10.5 -1 11])
title('Reflection Coefficients by Lag')

Reflection Coefficients by Lag

08 1

061 7

The reflection coefficients decay to zero after lag 2, which indicates that an AR(10) model
significantly overestimates the time dependence in the data.

1-38

aryule

Definitions

AR(p) Model

In an AR model of order p, the current output is a linear combination of the past p
outputs plus a white noise input. The weights on the p past outputs minimize the mean-
square prediction error of the autoregression. If y(n) is the current value of the output
and x(n) is a zero-mean white noise input, the AR(p) model is:

p
Z alk)y(n— k) = x(n).
k=0

Reflection Coefficients

The reflection coefficients are the partial autocorrelation coefficients scaled by —1. The
reflection coefficients indicate the time dependence between y(n) and y(n — k) after
subtracting the prediction based on the intervening k& — 1 time steps.

Algorithms

aryule uses the Levinson-Durbin recursion on the biased estimate of the sample
autocorrelation sequence to compute the parameters.

References

[1] Hayes, Monson H. Statistical Digital Signal Processing and Modeling. New York:
John Wiley & Sons, 1996.

See Also

arburg | arcov | armcov | levinson | lpc

Topics

“Parametric Modeling”

1-39

1 Functions — Alphabetical List

Introduced before R2006a

1-40

bandpower

bandpower

Band power

Syntax

P = bandpower (x)
= bandpower (x, fs, freqrange)

e}
I

p = bandpower (pxx, f, 'psd')
= bandpower (pxx, £, fregrange, 'psd"')

e}
I

Description

p = bandpower (x) returns the average power in the input signal, x. If x is a matrix,
then bandpower computes the average power in each column independently.

p = bandpower (x, fs, freqrange) returns the average power in the frequency range,
fregrange, specified as a two-element vector. You must input the sampling frequency,
fs, to return the power in a specified frequency range. bandpower uses a modified
periodogram to determine the average power in freqrange.

p = bandpower (pxx, f, 'psd') returns the average power computed by integrating
the power spectral density (PSD) estimate, pxx. The integral is approximated by the
rectangle method. The input, f, is a vector of frequencies corresponding to the PSD
estimates in pxx. The 'psd' option indicates that the input is a PSD estimate and not
time series data.

p = bandpower (pxx, £, freqrange, 'psd') returns the average power contained in
the frequency interval, freqrange. If the frequencies in fregrange do not match values
in £, the closest values are used. The average power is computed by integrating the
power spectral density (PSD) estimate, pxx. The integral is approximated by the
rectangle method. The 'psd’' option indicates the input is a PSD estimate and not time
series data.

1-41

1 Functions — Alphabetical List

Examples

Comparison with Euclidean Norm

Create a signal consisting of a 100 Hz sine wave in additive N(0,1) white Gaussian noise.
The sampling frequency is 1 kHz. Determine the average power and compare it against

the 2 norm.

t =0:0.001:1-0.001;

= cos (2*pi*100*t)+randn(size(t));
p = bandpower (x)
p = 1.5264

12norm = norm(x,2)"2/numel (x)

12norm = 1.5264

Percentage of Total Power in Frequency Interval
Determine the percentage of the total power in a specified frequency interval.

Create a signal consisting of a 100 Hz sine wave in additive N(0,1) white Gaussian noise.
The sampling frequency is 1 kHz. Determine the percentage of the total power in the
frequency interval between 50 Hz and 150 Hz. Reset the random number generator for
reproducible results.

rng ('default")

t =0:0.001:1-0.001;
x = cos (2*pi*100*t)+randn(size(t));

pband = bandpower (x,1000, [50 15017);
ptot = bandpower (x,1000, [0 5001);
per power = 100* (pband/ptot)

per power = 51.9591

1-42

bandpower

Periodogram Input

Determine the average power by first computing a PSD estimate using the periodogram.
Input the PSD estimate to bandpower.

Create a signal consisting of a 100 Hz sine wave in additive N(0,1) white Gaussian noise.
The sampling frequency is 1 kHz. Obtain the periodogram and use the 'psd' flag to
compute the average power using the PSD estimate. Compare the result against the
average power computed in the time domain.

t =0:0.001:1-0.001;
Fs = 1000;
X = cos (2*pi*100*t)+randn(size(t));

[Pxx,F] = periodogram(x,rectwin(length(x)),length(x),Fs);
p = bandpower (Pxx,F, 'psd')

p = 1.5264
avpow = norm(x,2)"2/numel (x)
avpow = 1.5264

Percentage of Power in Frequency Band (Periodogram)

Determine the percentage of the total power in a specified frequency interval using the
periodogram as the input.

Create a signal consisting of a 100 Hz sine wave in additive N(0,1) white Gaussian noise.
The sampling frequency is 1 kHz. Obtain the periodogram and corresponding frequency
vector. Using the PSD estimate, determine the percentage of the total power in the
frequency interval between 50 Hz and 150 Hz.

Fs = 1000;
t 0:1/Fs:1-0.001;
cos (2*pi*100*t) +randn(size(t));

[Pxx,F] = periodogram(x,rectwin(length(x)),length(x),Fs);
pband = bandpower (Pxx,F, [50 100], 'psd');

1-43

1 Functions — Alphabetical List

1-44

ptot = bandpower (Pxx,F, 'psd'");
per power = 100* (pband/ptot)

per power = 42.0767

Average Power of a Multichannel Signal

Create a multichannel signal consisting of three sinusoids in additive N(0,1) white
Gaussian noise. The sinusoids' frequencies are 100 Hz, 200 Hz, and 300 Hz. The
sampling frequency is 1 kHz, and the signal has a duration of 1 s.

Fs = 1000;

t = 0:1/Fs:1-1/Fs;

f = [100;200;300];

x = cos (2*pi*f*t) '+randn (length(t),3);

Determine the average power of the signal and compare it to the 2 norm.

o) bandpower (x)

p =

12norm = dot (x,x)/length (x)

12norm =
1.5264 1.5382 1.4717
Input Arguments

x — Time series input
vector | matrix

bandpower

Input time series data, specified as a row or column vector or as a matrix. If x is a
matrix, then its columns are treated as independent channels.

Example: cos (pi/4*(0:159)) '+randn (160, 1) is a single-channel column-vector
signal.
Example: cos (pi./[4;2]1*(0:159)) "+randn (160, 2) is a two-channel noisy sinusoid.

Data Types: double | single
Complex Number Support: Yes

£s — Sampling frequency

1 (default) | positive scalar

Sampling frequency for the input time series data, specified as a positive scalar.
Data Types: double | single

freqrange — Frequency range for band power computation
two-element real-valued row or column vector

Frequency range for the band power computation, specified as a two-element real-valued
row or column vector. If the input signal, x, contains N samples, fregqrange must be
within the following intervals.

+ [0, £s/2] if x is real-valued and N is even

* [0, (N-1)fs/(2N)] if x is real-valued and N is odd

+ [-(N-2)fs/(2N), £s/2] if x is complex-valued and N is even

* [-(N-1)£s/(2N), (N-1)£s/(2N)] if x is complex-valued and N is odd

Data Types: double | single

pxx — PSD estimates
real-valued column vector with nonnegative elements

One- or two-sided PSD estimate, specified as a column vector with nonnegative elements.

Data Types: double | single

£ — Frequency vector for PSD estimates
column vector with real-valued elements

1-45

1 Functions — Alphabetical List

Frequency vector, specified as a column vector. The frequency vector, £, contains the
frequencies corresponding to the PSD estimates in pxx.

Data Types: double | single

Output Arguments

p — Average band power
nonnegative scalar

Average band power, returned as a nonnegative scalar.

Data Types: double | single

See Also

periodogram | sfdr

Introduced in R2013a

1-46

barthannwin

barthannwin

Modified Bartlett-Hann window

Syntax

w = barthannwin (L)

Description

w = barthannwin (L) returns an L-point modified Bartlett-Hann window in the column
vector w. Like Bartlett, Hann, and Hamming windows, this window has a mainlobe at
the origin and asymptotically decaying sidelobes on both sides. It is a linear combination
of weighted Bartlett and Hann windows with near sidelobes lower than both Bartlett and
Hann and with far sidelobes lower than both Bartlett and Hamming windows. The
mainlobe width of the modified Bartlett-Hann window is not increased relative to either
Bartlett or Hann window mainlobes.

Note The Hann window is also called the Hanning window.

Examples

Bartlett-Hann Window

Create a 64-point Bartlett-Hann window. Display the result using wvtool.

L = 04;
wvtool (barthannwin (L))

1-47

1 Functions — Alphabetical List

E Figure 1: Window Visualization Tool

File Edit Wiew Insert Tools Window Help

AIEERS S EIE R I

Window Viewer
Time domain

Fregquency domain

=20

40

'Ilﬂlﬂ

Amplitude

=60

Magnitude (dB)

-B0

=100

=120

fﬂ\ AN . N

i

10 20 30 40 50 60 0 02

Leakage Factor: 0.03 %6 Relative sidelobe attenuation: -35.9 dB

04 06 08

Samples Nomalized Frequency (== radisample)

hainlabe width (-3cdB): 0.042969

Algorithms

The equation for computing the coefficients of a Modified Bartlett-Hanning window is

w(n)=0.62-048

sl)

where 0 <n <N and the window lengthis L =N +1.

1-48

barthannwin

References

[1] Ha, Y. H., and J. A. Pearce. “A New Window and Comparison to Standard Windows.”
IEEE® Transactions on Acoustics, Speech, and Signal Processing. Vol. 37,
Number 2, 1999, pp. 298-301.

[2] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal
Processing. Upper Saddle River, NdJ: Prentice Hall, 1999, p. 468.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™,

Usage notes and limitations:

Window length must be a constant. Expressions or variables are allowed if their values
do not change.

See Also

Apps

Window Designer

Functions
bartlett | blackmanharris | bohmanwin | nuttallwin | parzenwin | rectwin |
triang | window | wvtool

Introduced before R2006a

1-49

1 Functions — Alphabetical List

1-50

bartlett

Bartlett window

Syntax

w = bartlett (L)

Description

w = bartlett (L) returns an L-point Bartlett window in the column vector w, where
L must be a positive integer. The coefficients of a Bartlett window are computed as
follows:

;N

The window length L=N +1.

The Bartlett window is very similar to a triangular window as returned by the triang
function. The Bartlett window always has zeros at the first and last samples, however,
while the triangular window is nonzero at those points. For L odd, the center L. - 2
points of bartlett (L) are equivalent to triang (L-2).

Note If you specify a one-point window (set . = 1), the value 1 is returned.

Examples

Bartlett Window

Create a 64-point Bartlett window. Display the result using wvtool.

bartlett

L = 64;
bw = bartlett (L):;
wvtool (bw)

E Figure 1: Window Visualization Tool E@

File Edit View Insert Tools Window Help o
ADNEEES Y IEEEHIEL

Window Wieser

Time domain 40 Frequency domaln
1
20 '.I
|
0.8 |
g ° l{ﬁ
}§ 0.6 g | |ﬂ.
= -y |I |
L} I
0.4] 2 i | I | IF
=40 w w 'hluny LI-||||||"I ||]| I"I.[
0.2 1 -60 ‘ 1
0 -80
10 20 30 40 50 60 0 02 04 0.6 08
Samples Womalized Frequency (== radisample)
Leakage Factar: 0.25 % Relative sidelobe attenuation: -26.5 d& Mainlobe width (-3dBEY 00330635
References

[1] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal
Processing. Upper Saddle River, NdJ: Prentice Hall, 1999.

1-51

1 Functions — Alphabetical List

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™,

Usage notes and limitations:

Window length must be a constant. Expressions or variables are allowed if their values
do not change.

See Also

Apps
Window Designer

Functions
barthannwin | blackmanharris | bohmanwin | nuttallwin | parzenwin
rectwin | triang | window | wvtool

Introduced before R2006a

1-52

besselap

besselap

Bessel analog lowpass filter prototype

Syntax

[z,p,k] = besselap(n)

Description

[z,p,k] = besselap (n) returns the poles and gain of an order-n Bessel analog
lowpass filter prototype. n must be less than or equal to 25. The function returns the
poles in the length n column vector p and the gain in scalar k. z is an empty matrix
because there are no zeros. The transfer function is

k
(s—p@)(s—p2)--(s— p(n))

H(s) =

besselap normalizes the poles and gain so that at low frequency and high frequency the
Bessel prototype is asymptotically equivalent to the Butterworth prototype of the same

order [1]. The magnitude of the filter is less than 1/ V2 at the unity cutoff frequency
Q. =1.

Analog Bessel filters are characterized by a group delay that is maximally flat at zero
frequency and almost constant throughout the passband. The group delay at zero
frequency is

(2n)! /"
2" n!
Examples

1-53

1 Functions — Alphabetical List

Frequency Response of an Analog Bessel Filter

Design a 6th-order Bessel analog lowpass filter. Display its magnitude and phase

responses.
[z,p, k] = besselap(6);
[num,den] = zp2tf(z,p,k)

fregs (num, den)

oo

’

oo

oo

Lowpass filter prototype
Convert to transfer function form
Frequency response of analog filter

10° - e

102 F

Magnitude

-
L=

B
=T

107
Frequency (rad/s)

200

100

100 T

Fhase (degrees)
—_

=200

1-54

107
Frequency (rad/s)

besselap

Algorithms

besselap finds the filter roots from a lookup table constructed using Symbolic Math
Toolbox™ software.

References

[1] Rabiner, L. R., and B. Gold. Theory and Application of Digital Signal Processing.
Englewood Cliffs, NdJ: Prentice-Hall, 1975, pp. 228-230.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Filter order must be a constant. Expressions or variables are allowed if their values do
not change.

See Also

besself | buttap | cheblap | cheb2ap | ellipap

Introduced before R2006a

1-55

1 Functions — Alphabetical List

besself

Bessel analog filter design

Syntax

[b,a] = besself(n,Wo)
[z,p, k] = besself(...)
[A,B,C,D] = besself(...)

Description

besself designs lowpass, analog Bessel filters, which are characterized by almost
constant group delay across the entire passband, thus preserving the wave shape of
filtered signals in the passband. besself does not support the design of digital Bessel
filters.

[b,a] = besself (n,Wo) designs an nth-order lowpass analog Bessel filter, where Wo
is the angular frequency up to which the filter's group delay is approximately constant.
Larger values of the filter order n produce a group delay that better approximates a
constant up to frequency Wo.

besself returns the filter coefficients in the length n+1 row vectors b and a, with
coefficients in descending powers of s, derived from this transfer function:
_B(®) _b(1)s"+b(2)s" +-4b(n+1)

A(s) a(1)s"+2(2)s" T+ ta(n+l)

H(s)

[z,p, k] = besself(...) returns the zeros and poles in length n or 2*n column
vectors z and p and the gain in the scalar k.

[A,B,C,D] = besself(...) returns the filter design in state-space form, where 2, B,
C, and D are

x=Ax+Bu
y=Cx+Du.

1-56

besself

and u is the input, x is the state vector, and y is the output.

Examples

Frequency Response of an Analog Bessel Filter

Design a 5th-order analog lowpass Bessel filter with approximately constant group delay

4 . . .
up to 10 radss. Plot the magnitude and phase responses of the filter using fregs.

[b,a] = besself (5,10000);

fregs (b, a)

100 —

Magnitude

107

102 10° 104

Frequency (rad/s)

200 ——

-100

Fhase (degrees)
o
|

=200

102 103 104

Frequency (rad/s)

1-57

1 Functions — Alphabetical List

Frequency Response of a Digital Bessel Filter

Fs =

Design an analog Bessel filter of order 5. Convert it to a digital IIR filter using
bilinear. Display its frequency response.

100; Sampling Frequency
[z,p, k] = besself(5,1000);
[zd,pd, kd] = bilinear(z,p,k,Fs);
sos =

Bessel analog filter design
Analog to digital mapping
Convert to SOS form

Visualize the digital filter

zp2sos (zd, pd, kd) ; g
fvtool (sos) %

1-58

Magnitude Response (dB)
0 - i
10 “\\ |
20 r ﬁ 7
) \
E =30 |II -
@ I|I
SH4or]
£ '|
@ -50 |
= |I
=60 || .
I
70 | | T
|
B0 |_
_BD i i i i i i i i i |
0 01 02 03 04 05 06

Mormalized Frequency (=« rad/sample)

0.7 0.8 0.9

besself

Limitations

Lowpass Bessel filters have a monotonically decreasing magnitude response, as do
lowpass Butterworth filters. Compared to the Butterworth, Chebyshev, and elliptic
filters, the Bessel filter has the slowest rolloff and requires the highest order to meet an
attenuation specification.

For high order filters, the state-space form is the most numerically accurate, followed by
the zero-pole-gain form. The transfer function coefficient form is the least accurate;
numerical problems can arise for filter orders as low as 15.

Algorithms

besself performs a four-step algorithm:

1 It finds lowpass analog prototype poles, zeros, and gain using the besselap
function.

2 It converts the poles, zeros, and gain into state-space form.

3 It transforms the lowpass prototype into a lowpass filter that meets the design

specifications.

4 It converts the state-space filter back to transfer function or zero-pole-gain form, as
required.

References

[1] Parks, Thomas W., and C. Sidney Burrus. Digital Filter Design. New York: John
Wiley & Sons, 1987.

See Also
besselap | butter | chebyl | cheby2 | ellip

Introduced before R2006a

1-59

1 Functions — Alphabetical List

bilinear

Bilinear transformation method for analog-to-digital filter conversion

Syntax

zd,pd, kd] = bilinear(z,p,k, f£s)
zd,pd, kd] = bilinear(z,p,k, fs, fp)

[
[
[
[numd, dend]
[
[

numd, dend] = bilinear (num,den, £s)
= bilinear (num, den, fs, fp)
Ad,Bd,Cd,Dd] = bilinear(A,B,C,D, fs)
]

Ad, Bd,Cd, Dd

bilinear(A,B,C,D, fs, fp)

Description

The bilinear transformation is a mathematical mapping of variables. In digital filtering,
it is a standard method of mapping the s or analog plane into the z or digital plane. It
transforms analog filters, designed using classical filter design techniques, into their
discrete equivalents.

The bilinear transformation maps the s-plane into the z-plane by
H(z)= H(s)| o, 2-1.
“z+1

This transformation maps the jQ axis (from & = —o0 to +w) repeatedly around the unit
circle (¢%, from = —11 to) by

w=2tan"! (ﬁ]
2f,

S

bilinear can accept an optional parameter Fp that specifies prewarping. fp, in hertz,
indicates a “match” frequency, that is, a frequency for which the frequency responses
before and after mapping match exactly. In prewarped mode, the bilinear transformation
maps the s-plane into the z-plane with

H(z)=H(s)|_ 2f, 1.
tan nf—” =+l
f.

s

1-60

bilinear

With the prewarping option, bilinear maps the jQ axis (from Q = —w to +w) repeatedly
around the unit circle (¢, from @ = —11 to) by

Qtan nf—p

1 s

27rfp

ow=2tan”

In prewarped mode, bilinear matches the frequency 2mf, (in radians per second) in the
s-plane to the normalized frequency 2mf /f (in radians per second) in the z-plane.

The bilinear function works with three different linear system representations: zero-
pole-gain, transfer function, and state-space form.

Zero-Pole-Gain
[zd,pd, kd] = bilinear(z,p,k, fs) and

[zd,pd, kd] = bilinear(z,p,k, fs, fp) convert the s-domain transfer function
specified by z, p, and k to a discrete equivalent. Inputs z and p are column vectors
containing the zeros and poles, k is a scalar gain, and fs is the sampling frequency in
hertz. bilinear returns the discrete equivalent in column vectors zd and pd and scalar
kd. The optional match frequency, £p is in hertz and is used for prewarping.

Transfer Function
[numd, dend] = bilinear (num,den, fs) and

[numd, dend] = bilinear (num,den, fs, fp) convert an s-domain transfer function
given by num and den to a discrete equivalent. Row vectors num and den specify the
coefficients of the numerator and denominator, respectively, in descending powers of s.
Let B(s) be the numerator polynomial and A(s) be the denominator polynomial. The
transfer function is:

B(s) B1)s" +---+B(n)s+B(n+1)
A(s) ADs™ +---+Am)s+ A(m+ 1)

fs is the sampling frequency in hertz. bilinear returns the discrete equivalent in row
vectors numd and dend in descending powers of z (ascending powers of z!). fp is the
optional match frequency, in hertz, for prewarping.

1-61

1 Functions — Alphabetical List

1-62

State-Space

[Ad, Bd, Cd, DA] bilinear(A,B,C,D, fs) and

[Ad,Bd,Cd,Dd] = bilinear(A,B,C,D,fs, fp) convert the continuous-time state-
space system in matrices A, B, C, D

x =Ax+ Bu

y=Cx+Du

to the discrete-time system:
x[n+1]= Aydnl+ Byun],
Mnl =Cyxlnl+ Dyuln].

fs is the sampling frequency in hertz. bilinear returns the discrete equivalent in
matrices Ad, Bd, Cd, Dd. The optional match frequency, fp is in hertz and is used for
prewarping.

Examples

Discrete-Time Representation of an Elliptic Filter

Design a 6th-order elliptic analog lowpass filter with 5 dB of ripple in the passband and a
stopband 90 dB down. Use bilinear to transform it to a discrete-time IIR filter.

Fs = 0.5; % Sampling frequency

[z,p, k] = ellipap(6,5,90); % Lowpass filter prototype

[num, den] = zp2tf(z,p,k); % Convert to transfer function form
[numd, dend] = bilinear (num,den,Fs); % Analog to digital conversion

fvtool (numd, dend) Visualize the filter

bilinear

Magnitude (dB)

Magnitude Response (dB)

- __.-f’?__ z:"ﬁ'n .

40T y

B0 F S

80 F "

|
80

T —
N 7\
100 | I \

ARV

0 01 02 03 04 05 06 07 08 09
Mormalized Frequency (=« rad/sample)

Diagnostics

bilinear requires that the numerator order be no greater than the denominator order.
If this is not the case, bilinear displays

Numerator cannot be higher order than denominator.

For bilinear to distinguish between the zero-pole-gain and transfer function linear
system formats, the first two input parameters must be vectors with the same
orientation in these cases. If this is not the case, bilinear displays

First two arguments must have the same orientation.

1-63

1 Functions — Alphabetical List

Algorithms

bilinear uses one of two algorithms depending on the format of the input linear system
you supply. One algorithm works on the zero-pole-gain format and the other on the state-
space format. For transfer function representations, bilinear converts to state-space
form, performs the transformation, and converts the resulting state-space system back to
transfer function form.

Zero-Pole-Gain Algorithm

For a system in zero-pole-gain form, bilinear performs four steps:
1 If fp is present, it prewarps:

fp = 2*pi*fp;
fs = fp/tan(fp/fs/2)
otherwise, fs = 2*fs.

2 It strips any zeros at o using

z = z(finite(z));
3 It transforms the zeros, poles, and gain using
pd = (1+p/fs) ./ (1-p/fs); % Do bilinear transformation

zd (1+z/fs) ./ (1-z/fs);
kd = real (k*prod(fs-z)./prod(fs-p));

4 It adds extra zeros at -1 so the resulting system has equivalent numerator and
denominator order.

State-Space Algorithm

For a system in state-space form, bilinear performs two steps:

1 If fpis present, let
PR
tan(zfy / f;)

If £p is not present, let A=fs.

1-64

bilinear

2 Compute Ad, Bd, Cd, and Dd in terms of A, B, C, and D using
_ 1,51 1
Ag —(I—Au) (I+A 2/1)’
_ 17 a1yl
B, —ﬁ(I Am) B,

C, =ﬁC(I—Ai)‘1,

Dy=CUI-AL)'B+D.

References

[1] Parks, Thomas W., and C. Sidney Burrus. Digital Filter Design. New York: John
Wiley & Sons, 1987, pp. 209-213.

[2] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal
Processing. Upper Saddle River, NdJ: Prentice Hall, 1999, pp. 450—454.

See Also
impinvar | 1p2bp | 1p2bs | 1p2hp | 1p21lp

Introduced before R2006a

1-65

1 Functions — Alphabetical List

1-66

bitrevorder

Permute data into bit-reversed order

Syntax

y = bitrevorder (x)
[y,1] = bitrevorder (x)

Description

bitrevorder is useful for pre-arranging filter coefficients so that bit-reversed ordering
does not have to be performed as part of an fft or inverse FFT (i £ft) computation. This
can improve run-time efficiency for external applications or for Simulink® blockset
models. Both MATLAB fft and ifft functions process linear input and output.

Note Using bitrevorder is equivalent to using digitrevorder with radix base 2.

y = bitrevorder (x) returns the input data in bit-reversed order in vector or matrix y.
The length of x must be an integer power of 2. If x is a matrix, the bit-reversal occurs on
the first dimension of x with size greater than 1. y is the same size as x.

[y,1] = bitrevorder (x) returns the bit-reversed vector or matrix y and the bit-
reversed indices i, such that y = x(i). Recall that MATLAB matrices use 1-based
indexing, so the first index of y will be 1, not 0.

The following table shows the numbers 0 through 7, the corresponding bits, and the bit-
reversed numbers.

Linear Index Bits Bit- Reversed Bit-Reversed Index
0 000 000 0
1 001 100 4
2 010 010 %

bitrevorder

Linear Index Bits Bit- Reversed Bit-Reversed Index
3 011 110 6

4 100 001 1

5 101 101 5

6 110 011 3

7 111 111 7

Examples

Vector in Bit-Reversed Order

Create a column vector and obtain its bit-reversed version. Verify by displaying the
binary representation explicitly.

x = (0:15)";
v

X bin
v bin

bitrevorder (x);

dec2bin (x) ;
dec2bin (v) ;

T = table(x,x bin,v,v bin)

T=16x4 table null

X x bin
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
38 1000
9 1001

10 1010

11 1011

12 1100

v

=

=
W w Ul Ok oo NDND MO

=

=

v bin

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011

1-67

1 Functions — Alphabetical List

1-68

13 1101 11 1011
14 1110 7 0111
15 1111 15 1111

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™,

See Also
digitrevorder | £ft | ifft

Introduced before R2006a

blackman

blackman

Blackman window

Syntax

' blackman (N)
w = blackman (N, SFLAG)

Description

w = blackman (N) returns the N-point symmetric Blackman window in the column
vector w, where N is a positive integer.

w = blackman (N, SFLAG) returns an N-point Blackman window using the window
sampling specified by 'sflag', which can be either 'periodic' or 'symmetric' (the
default). The 'periodic' flag is useful for DFT/FFT purposes, such as in spectral
analysis. The DFT/FFT contains an implicit periodic extension and the periodic flag
enables a signal windowed with a periodic window to have perfect periodic extension.
When 'periodic' is specified, blackman computes a length N+1 window and returns
the first N points. When using windows for filter design, the 'symmetric' flag should be
used.

See “Algorithms” on page 1-70 for a description of the difference between the symmetric
and periodic windows.

Note If you specify a one-point window (set N = 1), the value 1 is returned.

Examples

Blackman Window

Create a 64-point Blackman window. Display the result using wvtool.

1-69

1 Functions — Alphabetical List

L = 64;
wvtool (blackman (L))

E Figure 1: Window Visualization Taal E@

File Edit Wiew Insert Tools Window Help L]
ETIDIEERS DY IEE I

Window Viewer

Time domain e Fregquency domain
1 20 \
\
0 §
0.8 \
— |
g |,
— |
2 s 7ol \na
s E I ' f"nﬁﬁr
=L E‘ ai |.' Iilnllﬂ' Ilr"l"llr\
0.4 z 0 i! “ Vi
‘rrhl ‘r"l |"| \
. w
0.2 ‘
-120
0 =140
10 20 30 40 50 &0 0 02 04 06 08
Samples Nomalized Frequency (== radisample)
Leakage Factor: 0 % Relative sidelobe attenuation: -58.1 dB Mainlobe width (-3dBEY 0050781

Algorithms

Blackman Window

The following equation defines the Blackman window of length IV:

w(n) =0.42—0.5c0s 2" 10.08c0s " 0<n<M-1
N N

where M is N/2 for N even and (N + 1)/2 for N odd.

1-70

blackman

In the symmetric case, the second half of the Blackman window M <n < N — 1 is obtained
by flipping the first half around the midpoint. The symmetric option is the preferred
method when using a Blackman window in FIR filter design.

The periodic Blackman window is constructed by extending the desired window length by
one sample to N + 1, constructing a symmetric window, and removing the last sample.
The periodic version is the preferred method when using a Blackman window in spectral

analysis because the discrete Fourier transform assumes periodic extension of the input
vector.

References

[1] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal
Processing. Upper Saddle River, NdJ: Prentice Hall, 1999, pp. 468—471.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Window length must be a constant. Expressions or variables are allowed if their values
do not change.

See Also

Apps
Window Designer

Functions
flattopwin | hamming | hann | window | wvtool

1-71

1 Functions — Alphabetical List

Introduced before R2006a

1-72

blackmanharris

blackmanharris

Minimum 4-term Blackman-Harris window

Syntax

w = blackmanharris (N)
w blackmanharris (N, SFLAG)

Description

w = blackmanharris (N) returns an N-point symmetric 4-term Blackman-Harris
window in the column vector w. The window is minimum in the sense that its maximum
sidelobes are minimized.

w = blackmanharris (N, SFLAG) uses SFLAG window sampling. SFLAG can be
'symmetric' or 'periodic'. The defaultis 'symmetric'. You can find the equations
defining the symmetric and periodic windows in “Algorithms” on page 1-74.

Examples

Blackman-Harris Window

Create a 32-point symmetric Blackman-Harris window. Display the result using wvtool.

N = 32;
wvtool (blackmanharris (N))

1-73

1 Functions — Alphabetical List

TFI'_'I'II-%I Window Visualization Tool R EN
File Edit Wiew Insert Tools Window Help L]

SR hOTNNNH | & e &0 E W

Window Viewer

Time domain e Fregquency domain
1 20
I
0 \
0.8
g -20
E 06 g 4 \.,
= = '|
5 5
0.4 = [ﬂ
|If I|'r'-\\l N"
-100
0.2
-120
0 * =140
5 10 15 20 25 30 0 02 04 06 08
Samples Nomalized Frequency (== radisample)
Leakage Factor: 0 % Relative sidelobe attenuation: -92 dB Mainlobe width (-3dB) 0.117139

Algorithms

The equation for the symmetric 4-term Blackman-harris window of length NV is

2rn drn 6rn <n< N —
w(n) =ag - alcos(N 1)+a2cos(N 1) a3cos(N_1), 0<n<N-1

The equation for the periodic 4-term Blackman-harris window of length N is

2nn 4nn 67rn
w(n) =ay —ay COST +a200s7—a3 cos—, 0<n<N-1

The periodic window is N-periodic.

The following table lists the coefficients:

1-74

blackmanharris

Coefficient Value
ao 0.35875
al 0.48829
az 0.14128
a3 0.01168
References

[1] Harris, Fredric J. “On the Use of Windows for Harmonic Analysis with the Discrete
Fourier Transform.” Proceedings of the IEEE. Vol. 66, January 1978, pp. 51-83.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™,

Usage notes and limitations:

Window length must be a constant. Expressions or variables are allowed if their values
do not change.

See Also

Apps
Window Designer

Functions
barthannwin | bartlett | bohmanwin | nuttallwin | parzenwin | rectwin |
triang | window | wvtool

Introduced before R2006a

1-75

1 Functions — Alphabetical List

1-76

bohmanwin

Bohman window

Syntax

w = bohmanwin (L)

Description

w = bohmanwin (L) returns an L-point Bohman window in column vector w. A Bohman
window is the convolution of two half-duration cosine lobes. In the time domain, it is the
product of a triangular window and a single cycle of a cosine with a term added to set the
first derivative to zero at the boundary. Bohman windows fall off as 1/w*.

Examples

Bohman Window
Compute a 64-point Bohman window. Display the result using wvtool.
L = 04;

bw = bohmanwin (L) ;
wvtool (bw)

bohmanwin

4 Figure 1: Window Visualization Taal o || B ER
File Edit Wiew Insert Tools Window Help L]
S| hOTNNNH| &< & E K
Window Viewer
Time domain - Fregquency domain
1
0
0.8 |
— l(\'l I,r'\'
4 ﬁ =50 I n'l
=08 = I | I' IRTAYY
S = I
£ = i ' ﬁ'| ,'“". lr"-, n
< g -100 ‘ v ﬂ W’ ’f‘
0.4 =
02 -150
10 20 30 40 50 &0 02 04 06 08
Samples Nomalized Frequency (== radisample)
Leakage Factor: 0 % Relative sidelobe attenuation: -46 dB Mainlobe width (-3dBEY 0050781

Algorithms

The equation for computing the coefficients of a Bohman window is

w(x)=(1—|x|)cos(7r|x|)+lsin(7r|x|), -1<x<1
b

where x 1s a length-L vector of linearly spaced values generated using 1inspace. The
first and last elements of the Bohman window are forced to be identically zero.

1-77

1 Functions — Alphabetical List

1-78

References

[1] Harris, Fredric J. “On the Use of Windows for Harmonic Analysis with the Discrete
Fourier Transform.” Proceedings of the IEEE. Vol. 66, January 1978, pp. 51-83.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™,

Usage notes and limitations:

Window length must be a constant. Expressions or variables are allowed if their values
do not change.

See Also

Apps
Window Designer

Functions
barthannwin | bartlett | blackmanharris | nuttallwin | parzenwin | rectwin
| triang | window | wvtool

Introduced before R2006a

buffer

buffer

Buffer signal vector into matrix of data frames

Syntax

= buffer (x,n)

= buffer(x,n,p)

= buffer (x,n,p,opt)
z] = buffer(...)
z,opt] = buffer(...)

—
|

Y
Y

Description

y = buffer (x,n) partitions a length-1 signal vector x into nonoverlapping data
segments (frames) of length n. Each data frame occupies one column of matrix output v,
which has n rows and ceil (L/n) columns. If L is not evenly divisible by n, the last
column is zero-padded to length n.

y = buffer (x,n,p) overlaps or underlaps successive frames in the output matrix by p
samples:

* For 0 <p <n (overlap), buf fer repeats the final p samples of each frame at the
beginning of the following frame. For example, if x = 1:30 and n = 7, an overlap of
p = 3 looks like this.

hl' =
G 10 14
7 il 15
B 12 16
o 13 17

10 14 18
11 15 19
12 16 20

N VI e R
m o~ @ mkwr
R R
BEEMEERE
co BERYE

The first frame starts with p zeros (the default initial condition), and the number of
columns in yis ceil (L/ (n-p)).

1-79

1 Functions — Alphabetical List

1-80

Yy

For p < 0 (underlap), buf fer skips p samples between consecutive frames. For

example, if x = 1:30 and n = 7, a buffer with underlap of p = -3 looks like this.
E.r =

1 11 21
2 12 22
i 13 23 T
4 14 =2 skipped 9 13 =3
5 15 25 10 20 an
] 16 26
¥ 17 27

The number of columns in y is ceil (L/ (n-p)).

= buffer (x,n,p,opt) specifies a vector of samples to precede x (1) in an

overlapping buffer, or the number of initial samples to skip in an underlapping buffer:

For 0 <p <n (overlap), opt specifies a length-p vector to insert before x (1) in the
buffer. This vector can be considered an initial condition, which is needed when the
current buffering operation is one in a sequence of consecutive buffering operations.
To maintain the desired frame overlap from one buffer to the next, opt should contain
the final p samples of the previous buffer in the sequence. See “Continuous Buffering”
on page 1-86 below.

By default, opt is zeros (p, 1) for an overlapping buffer. Set opt to 'nodelay"' to
skip the initial condition and begin filling the buffer immediately with x (1) . In this
case, L must be length (p) or longer. For example, if x = 1:30 and n = 7, a buffer

with overlap of p = 3 looks like this.
bl' =

1 5] 13 17 21 2
2] 10 14 1B == 25
a ¥ 11 15 19 o] f=r)
4 B 12 16 20 2 2B
=] a 13 17 21 2= 23
G 10 14 18 = 26 an
¥ 11 15 1Q 23 2F o]

For p < 0 (underlap), opt is an integer value in the range [0, -p] specifying the
number of initial input samples, x (1:0pt), to skip before adding samples to the
buffer. The first value in the buffer is therefore x (opt+1). By default, opt is zero for
an underlapping buffer.

This option is especially useful when the current buffering operation is one in a
sequence of consecutive buffering operations. To maintain the desired frame underlap

buffer

from one buffer to the next, opt should equal the difference between the total number
of points to skip between frames (p) and the number of points that were available to
be skipped in the previous input to buf fer. If the previous input had fewer than p
points that could be skipped after filling the final frame of that buffer, the remaining
opt points need to be removed from the first frame of the current buffer. See
“Continuous Buffering” on page 1-86 for an example of how this works in practice.

[y,z] = buffer(...) partitions the length-L signal vector x into frames of length n,
and outputs only the full frames in y. If y is an overlapping buffer, it has n rows and m
columns, wherem = floor (L/ (n-p)) when length (opt) = porm = floor ((L-
n)/ (n-p))+1 when opt = 'nodelay'’.

If v is an underlapping buffer, it has n rows and m columns, wherem = floor ((L-
opt)/(n-p)) + (rem((L-opt), (n-p)) >= n).

If the number of samples in the input vector (after the appropriate overlapping or
underlapping operations) exceeds the number of places available in the n-by-m buffer, the
remaining samples in x are output in vector z, which for an overlapping buffer has
length L - m* (n-p) when length (opt) = porL - ((m-1)* (n-p)+n) when opt =
'nodelay’, and for an underlapping buffer has length (L-opt) - m* (n-p).

Output z shares the same orientation (row or column) as x. If there are no remaining
samples in the input after the buffer with the specified overlap or underlap is filled, z 1s
an empty vector.

[y,z,opt] = buffer(...) returns the last p samples of a overlapping buffer in
output opt. In an underlapping buffer, opt is the difference between the total number of
points to skip between frames (-p) and the number of points in x that were available to
be skipped after filling the last frame:

* For 0 <p <n (overlap), opt (as an output) contains the final p samples in the last
frame of the buffer. This vector can be used as the initial condition for a subsequent
buffering operation in a sequence of consecutive buffering operations. This allows the
desired frame overlap to be maintained from one buffer to the next. See “Continuous
Buffering” on page 1-86 below.

* For p < 0 (underlap), opt (as an output) is the difference between the total number of
points to skip between frames (-p) and the number of points in x that were available
to be skipped after filling the last frame: opt = m* (n-p) + opt - L where opt on
the right is the input argument to buffer, and opt on the left is the output

1-81

1 Functions — Alphabetical List

1-82

argument. z is the empty vector. Here m is the number of columns in the buffer, which
ism = floor ((L-opt)/(n-p)) + (rem((L-opt), (n-p))>=n).

Note that for an underlapping buffer output opt is always zero when output z
contains data.

The opt output for an underlapping buffer is especially useful when the current
buffering operation is one in a sequence of consecutive buffering operations. The opt
output from each buffering operation specifies the number of samples that need to be
skipped at the start of the next buffering operation to maintain the desired frame
underlap from one buffer to the next. If fewer than p points were available to be
skipped after filling the final frame of the current buffer, the remaining opt points
need to be removed from the first frame of the next buffer.

In a sequence of buffering operations, the opt output from each operation should be used
as the opt input to the subsequent buffering operation. This ensures that the desired
frame overlap or underlap is maintained from buffer to buffer, as well as from frame to
frame within the same buffer. See “Continuous Buffering” on page 1-86 below for an
example of how this works in practice.

Examples

Continuous Overlapping Buffers

Create a buffer containing 100 frames, each with 11 samples.

data = buffer(1:1100,11);

Take the frames (columns) in the matrix data to be the sequential outputs of a data
acquisition board sampling a physical signal: data (:, 1) is the first D/A output,
containing the first 11 signal samples; data (:, 2) is the second output, containing the
next 11 signal samples, and so on.

You want to rebuffer this signal from the acquired frame size of 11 to a frame size of 4
with an overlap of 1. Call buf fer to operate on each successive input frame, using the
opt parameter to maintain consistency in the overlap from one buffer to the next.

Set the buffer parameters. Specify a value of -5 for y (1) . The carryover vector is empty
initially.

buffer

n = 4;

p=1;

opt = -5;
[

z

Now repeatedly call buffer, each time passing in a new signal frame (column) from
data. Overflow samples (returned in z) are carried over and prepended to the input in
the subsequent call to buffer.
for i = l:size(data,?2)

x = data(:,1);

[yv,z,0pt] = buffer([z;x],n,p,0pt);
end

Here's what happens during the first four iterations.

The size of the output matrix, y, can vary by a single column from one iteration to the
next. This is typical for buffering operations with overlap or underlap.

1-83

1 Functions — Alphabetical List

1-84

Continuous Underlapping Buffers

Create a buffer containing 100 frames, each with 11 samples.

data = buffer(1:1100,11);

Take data (:,1) as the first D/A output, containing the first 11 signal samples,
data (:,2) as the second output, containing the next 11 signal samples, and so on.

You want to rebuffer this signal from the acquired frame size of 11 to a frame size of 4
with an underlap of 2. To do this, you will repeatedly call buffer to operate on each
successive input frame, using the opt parameter to maintain consistency in the underlap
from one buffer to the next.

Set the buffer parameters. Specify a new frame size of 4 and an underlap of -2. Skipp the
first input element, x (1) by setting opt to 1. The carryover vector is empty initially.

Now repeatedly call buffer, each time passing in a new signal frame (column) from
data. Overflow samples (returned in z) are carried over and prepended to the input in
the subsequent call to buffer.

for 1 = l:size(data,?2)

x = data(:,1);

[y,z,0pt] = buffer([z';x],n,p,0pt);
end

Here's what happens during the first three iterations.

buffer

The size of the output matrix, y, can vary by a single column from one iteration to the
next. This is typical for buffering operations with overlap or underlap.

Diagnostics

Error messages are displayed when p >n or length (opt)#length (p) in an overlapping
buffer case:

1-85

1 Functions — Alphabetical List

1-86

Frame overlap P must be less than the buffer size N.
Initial conditions must be specified as a length-P vector.

Definitions

Continuous Buffering

In a continuous buffering operation, the vector input to the buf fer function represents
one frame in a sequence of frames that make up a discrete signal. These signal frames
can originate in a frame-based data acquisition process, or within a frame-based
algorithm like the FFT.

As an example, you might acquire data from an A/D card in frames of 64 samples. In the
simplest case, you could rebuffer the data into frames of 16 samples; buffer withn =16
creates a buffer of four frames from each 64-element input frame. The result is that the
signal of frame size 64 has been converted to a signal of frame size 16; no samples were
added or removed.

In the general case where the original signal frame size, 1, is not equally divisible by the
new frame size, n, the overflow from the last frame needs to be captured and recycled
into the following buffer. You can do this by iteratively calling buf fer on input x with
the two-output-argument syntax:

o\

is a column vector.
is a row vector.

[v,z] = buffer([z;x],n)

X
[y,z] = buffer([z,x],n) X

o\

This simply captures any buffer overflow in z, and prepends the data to the subsequent
input in the next call to buf fer. Again, the input signal, x, of frame size 1, has been
converted to a signal of frame size n without any insertion or deletion of samples.

Note that continuous buffering cannot be done with the single-output syntax
y = buffer(...), because the last frame of y in this case is zero padded, which adds
new samples to the signal.

Continuous buffering in the presence of overlap and underlap is handled with the opt
parameter, which is used as both an input and output to buf fer. The following two
examples demonstrate how the opt parameter should be used.

buffer

See Also

reshape

Introduced before R2006a

1-87

1 Functions — Alphabetical List

1-88

buttap

Butterworth filter prototype

Syntax

[z,p, k] = buttap(n)
Description
[z,p, k] = buttap (n) returns the poles and gain of an order n Butterworth analog

lowpass filter prototype. The function returns the poles in the length n column vector p
and the gain in scalar k. z is an empty matrix because there are no zeros. The transfer
function is

2As) k

ps) (s=p)(s—p(2))-(s - p(n)

H(s) =

Butterworth filters are characterized by a magnitude response that is maximally flat in
the passband and monotonic overall. In the lowpass case, the first 2n-1 derivatives of the
squared magnitude response are zero at @ = 0. The squared magnitude response function
1s

1

1+(w/ ay

corresponding to a transfer function with poles equally spaced around a circle in the left

half plane. The magnitude response at the cutoff angular frequency o, is always 1/ V2
regardless of the filter order. buttap sets ®, to 1 for a normalized result.

Examples

buttap

Magnitude

Fhase (degrees)

Frequency Response of a Butterworth Analog Filter

Design a 9th-order Butterworth analog lowpass filter. Display its magnitude and phase

responses.

[z,p, k] = buttap(9);
[num, den] = zp2tf(z,p,k);

fregs (num, den)

o oo

oo

Butterworth filter prototype
Convert to transfer function form
Frequency response of analog filter

10°

-

L=
tn
T

10°10
1072

107
Frequency (rad/s)

10”

200

100

100

200
1072

10
Frequency (rad/s)

10?

1-89

1 Functions — Alphabetical List

Algorithms

z

[1;

P exp (sqrt (=1)* (pi* (1:2:2*n-1)/(2*n)+pi/2)).";
k real (prod(-p));
References

[1] Parks, T. W., and C. S. Burrus. Digital Filter Design. New York: John Wiley & Sons,
1987, chap. 7.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™,

Usage notes and limitations:

Filter order must be a constant. Expressions or variables are allowed if their values do
not change.

See Also
besselap | butter | cheblap | cheb2ap | ellipap

Introduced before R2006a

1-90

butter

butter

Butterworth filter design

Syntax

[b,a] = butter (n,Wn)

[b,a]l = butter(n,Wn, ftype)

[z,p,k] = butter(_)

[A,B,C,D] = butter(__)

[1 = butter(___ ,'s")

Description

[b,a]l = butter (n,Wn) returns the transfer function coefficients of an nth-order

lowpass digital Butterworth filter with normalized cutoff frequency Wn.

[b,a] = butter (n,Wn, ftype) designs a lowpass, highpass, bandpass, or bandstop
Butterworth filter, depending on the value of ftype and the number of elements of Wn.
The resulting bandpass and bandstop designs are of order 2n.

Note: See “Limitations” on page 1-102 for information about numerical issues that
affect forming the transfer function.

[z,p, k] = butter() designs a lowpass, highpass, bandpass, or bandstop digital

Butterworth filter and returns its zeros, poles, and gain. This syntax can include any of
the input arguments in previous syntaxes.

[A,B,C,D] = butter() designs a lowpass, highpass, bandpass, or bandstop
digital Butterworth filter and returns the matrices that specify its state-space
representation.

[] = butter(, 's') designs a lowpass, highpass, bandpass, or bandstop

analog Butterworth filter with cutoff angular frequency Wn.

1-91

1 Functions — Alphabetical List

Examples

Lowpass Butterworth Transfer Function

Design a 6th-order lowpass Butterworth filter with a cutoff frequency of 300 Hz, which,

for data sampled at 1000 Hz, corresponds to 0.6 rad/sample. Plot its magnitude and
phase responses. Use it to filter a 1000-sample random signal.

fc = 300;
fs 1000;

[b,a] = butter(6,fc/(fs/2));
freqz (b, a)

1-92

butter

Magnitude (dB)

Fhase (degrees)

D T T T T T T — __I__ T T
-100
-200
—EDD i i i i i i i i i
0.1 02 03 04 05 06 07 08 09
Mormalized Frequency (= rad/sample)
D — T T T T T T T T
-200 —p=
.
.
-400 B :
—EDD i i i i i i i i i
0.1 02 03 04 05 06 07 08 09
Mormalized Frequency (= rad/sample)
datalIn = randn(1000,1);

dataOut

Bandstop Butterworth Filter

filter (b, a,dataln);

Design a 6th-order Butterworth bandstop filter with normalized edge frequencies of 0.2z

and 067 rad/sample. Plot its magnitude and phase responses. Use it to filter random
data.

1-93

1 Functions — Alphabetical List

[b,al] = butter(3,[0.2 0.6], "'stop");
freqz (b, a)
D T '_'““-h-_ T T T d_d___.——r— T T T
. T
— -
T 50 1
5
S -100¢ |' 1
=
&
= =150 ’
—EDD i i i i i i i i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Mormalized Frequency (= rad/sample)
D '-._____- T T T T T T T T T
® I
® -100 1 ~— 1
3 ~
T -200 F . ~L 1
o "'-.__H_.-\- | '\-\.H..
&£ -300 ¢ — |
[— |
—4':“} i i i i i i i i i

0 01 02 03 04 05 06 07 08 09 1
Mormalized Frequency (= rad/sample)

datalIn = randn(1000,1);
dataOut = filter(b,a,dataln);

Highpass Butterworth Filter

Design a 9th-order highpass Butterworth filter. Specify a cutoff frequency of 300 Hz,
which, for data sampled at 1000 Hz, corresponds to 0.6x rad/sample. Plot the magnitude

1-94

butter

Magnitude (dB)

and phase responses. Convert the zeros, poles, and gain to second-order sections for use
by fvtool.

[z,p, k] = butter(9,300/500, "high'");
sos = zp2sos(z,p,k);
fvtool (sos, "Analysis', "freqg')

Magnitude Response (dB) and Phase Response

o[/, 13.594
-50 // 110.596
N\ z
\ £
L LY i =
-100 \ 7.598 §
g
\ @
£
-150 [N 1 4.599
™,
\\~~
200 | S 1 1601
.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mormalized Frequency (=7 rad/sample)

1-95

1 Functions — Alphabetical List

1-96

Bandpass Butterworth Filter

Design a 20th-order Butterworth bandpass filter with a lower cutoff frequency of 500 Hz
and a higher cutoff frequency of 560 Hz. Specify a sample rate of 1500 Hz. Use the state-
space representation. Design an identical filter using designfilt.

[A,B,C,D] = butter (10, [500 560]/750);

d = designfilt ('bandpassiir', 'FilterOrder', 20,
'HalfPowerFrequencyl', 500, 'HalfPowerFrequency2', 560,
'SampleRate',1500) ;

Convert the state-space representation to second-order sections. Visualize the frequency
responses using fvtool.

sos = ss2sos(A,B,C,D);
fvt = fvtool (sos,d, 'Fs',1500);
legend (fvt, '"butter', 'designfilt"')

butter

Magnitude (dB)

Magnitude Response (dB)

0r I 4

-100 /- \ 1
150 I

-200 i

250 | s butter
desigrifilt

-300 | |

asof [1

=400 [1 1 1 1 1 1 1 i

0 100 200 300 400 500 600 700
Frequency (Hz)

Comparison of Analog IIR Lowpass Filters

Design a 5th-order analog Butterworth lowpass filter with a cutoff frequency of 2 GHz.

Multiply by 27 to convert the frequency to radians per second. Compute the frequency
response of the filter at 4096 points.

n = 5;
f = 2e9;

[zb,pb,kb] = butter(n,2*pi*f,'s");

1-97

1 Functions — Alphabetical List

1-98

[bb,ab] = zp2tf (zb,pb, kb) ;
[hb,wb] = fregs (bb,ab,4096) ;

Design a 5th-order Chebyshev Type I filter with the same edge frequency and 3 dB of
passband ripple. Compute its frequency response.

[z1,pl,k1] = chebyl(n,3,2*pi*f,'s"');
[bl,al] = zp2tf(zl,pl,kl);
[hl,wl] = fregs(bl,al,4096);

Design a 5th-order Chebyshev Type II filter with the same edge frequency and 30 dB of
stopband attenuation. Compute its frequency response.

[z2,p2,k2] = cheby2(n,30,2*%pi*f, "'s");
[b2,a2] = zp2tf(z2,p2,k2);
[h2,w2] fregs (b2,a2,4096);

Design a 5th-order elliptic filter with the same edge frequency, 3 dB of passband ripple,
and 30 dB of stopband attenuation. Compute its frequency response.

[ze,pe,ke] = ellip(n,3,30,2*pi*f, "'s");
[be,ae] = zp2tf(ze,pe,ke);
[he,we] fregs (be,ae, 4096) ;

Plot the attenuation in decibels. Express the frequency in gigahertz. Compare the filters.

plot (wb/ (2e9*pi) ,mag2db (abs (hb)))

hold on

plot (wl/ (2e9*pi) ,mag2db (abs (hl)))

plot (w2/ (2e9*pi) ,mag2db (abs (h2)))

plot (we/ (2e9*pi) ,mag2db (abs (he)))

axis ([0 4 -40 5])

grid

xlabel ('Frequency (GHz)")

ylabel ('Attenuation (dB) ")

legend ('butter', 'chebyl', 'cheby2', 'ellip"')

butter

Attenuation {dB)

butter

i
tn

L
=

0 0.5 1 15 2 25 3 3.5 4
Frequency (GHz)

The Butterworth and Chebyshev Type II filters have flat passbands and wide transition
bands. The Chebyshev Type I and elliptic filters roll off faster but have passband ripple.
The frequency input to the Chebyshev Type II design function sets the beginning of the
stopband rather than the end of the passband.

Input Arguments

n — Filter order
integer scalar

Filter order, specified as an integer scalar.

1-99

1 Functions — Alphabetical List

1-100

Data Types: double

Wn — Cutoff frequency
scalar | two-element vector

Cutoff frequency, specified as a scalar or a two-element vector. The cutoff frequency is
the frequency at which the magnitude response of the filter is 1 /2.

If Wn is scalar, then butter designs a lowpass or highpass filter with cutoff frequency
Wn.

If Wn is the two-element vector [wl w2], where wl < w2, then butter designs a
bandpass or bandstop filter with lower cutoff frequency w1l and higher cutoff
frequency w2.

For digital filters, the cutoff frequencies must lie between 0 and 1, where 1
corresponds to the Nyquist rate—half the sample rate or ir rad/sample.

For analog filters, the cutoff frequencies must be expressed in radians per second and
can take on any positive value.

Data Types: double

ftype — Filter type
'low' | 'bandpass' | 'high' | 'stop'

Filter type, specified as one of the following:

"low' specifies a lowpass filter with cutoff frequency Wn. ' low' is the default for
scalar Wn.

'high' specifies a highpass filter with cutoff frequency wn.

'bandpass"' specifies a bandpass filter of order 2n if Wn is a two-element vector.
'bandpass"' is the default when Wn has two elements.

'stop' specifies a bandstop filter of order 2n if Wn is a two-element vector.

Data Types: char

butter

Output Arguments

b, a — Transfer function coefficients
row vectors

Transfer function coefficients of the filter, returned as row vectors of length n + 1 for
lowpass and highpass filters and 2n + 1 for bandpass and bandstop filters.

* For digital filters, the transfer function is expressed in terms of b and a as

B(z) b(1)+b(2)z 4+ 4b(n+1)z™"

Az) a(1)+a(2)z 7t

H(z)= .
+o-ta(n+l)z

* For analog filters, the transfer function is expressed in terms of b and a as

n n-1_
H(S)_B(S)_b(l)s +b(2)s +:--+b(n+1l)

A(s) a(1)s"+a(2)s" T+ ta(n+l)
Data Types: double

z,p,k — Zeros, poles, and gain
column vectors, scalar

Zeros, poles, and gain of the filter, returned as two column vectors of length n (2n for
bandpass and bandstop designs) and a scalar.
+ For digital filters, the transfer function is expressed in terms of z, p, and k as
1-z(L)zHA-z(2)z HA-z)z hH
1-p(1) 2 Hl-p(2)z™)A-p(n)z™)

H() =x

+ For analog filters, the transfer function is expressed in terms of z, p, and k as
(s=z(1))(s=z(2)):(s=z(n))
(s=p (1))(s=p (2))-(s—p (n))

H(s) =k
Data Types: double
A,B,C,D — State-space matrices

matrices

1-101

1 Functions — Alphabetical List

1-102

State-space representation of the filter, returned as matrices. If m = n for lowpass and
highpass designs and m = 2n for bandpass and bandstop filters, then A is m X m, B is
mX1,Cislxm,andDis 1X 1.

+ For digital filters, the state-space matrices relate the state vector x, the input u, and
the output y through

x(k+1) =Aax(k)+Bu(k)
y(k) = Cx(k)+Du(k).

+ For analog filters, the state-space matrices relate the state vector x, the input u, and
the output y through

Xx=Ax+Bu
y=Cx+Du.

Data Types: double

Definitions

Limitations

Numerical Instability of Transfer Function Syntax

In general, use the [z, p, k] syntax to design IIR filters. To analyze or implement your
filter, you can then use the [z, p, k] output with zp2sos. If you design the filter using
the [b, a] syntax, you might encounter numerical problems. These problems are due to
round-off errors and can occur for n as low as 4. The following example illustrates this
limitation.

n==6;
Wn = [2.5e6 29e6]/500e6;
ftype = 'bandpass';

% Transfer Function design
[b,a] = butter (n,Wn,ftype); % This is an unstable filter

% Zero-Pole-Gain design
[z,p,k] = butter (n,Wn, ftype);
sos = zp2sos(z,p,k);

butter

3 Display and compare results
hfvt =

fvtool (b, a,sos, "FrequencyScale', "log');
legend (hfvt, 'TF Design', 'ZPK Design')

Magnitude Response (dB)

-50 -
2) N\
S, -100 N
S TF Design \
’E ZPK Design A
S -150 N
= |
II|
\
-200 i
!
|
|
-250 |

10°3 1072 107
Mormalized Frequency (=« rad/sample)

Algorithms

Butterworth filters have a magnitude response that is maximally flat in the passband
and monotonic overall. This smoothness comes at the price of decreased rolloff steepness.
Elliptic and Chebyshev filters generally provide steeper rolloff for a given filter order.

butter uses a five-step algorithm:

1-103

1 Functions — Alphabetical List

1 It finds the lowpass analog prototype poles, zeros, and gain using the function
buttap.

2 It converts the poles, zeros, and gain into state-space form.

3 Ifrequired, it uses a state-space transformation to convert the lowpass filter into a
bandpass, highpass, or bandstop filter with the desired frequency constraints.

4 For digital filter design, it uses bilinear to convert the analog filter into a digital
filter through a bilinear transformation with frequency prewarping. Careful
frequency adjustment enables the analog filters and the digital filters to have the
same frequency response magnitude at Wn or at wl and w2.

5 It converts the state-space filter back to its transfer function or zero-pole-gain form,
as required.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Filter coefficients must be constants. Expressions or variables are allowed if their values
do not change.

See Also
besself | buttap | buttord | chebyl | cheby2 | designfilt | ellip | filter |
maxflat | sosfilt

Introduced before R2006a

1-104

buttord

buttord

Butterworth filter order and cutoff frequency

Syntax

[n,Wn] = buttord(Wp,Ws,Rp,Rs)

[n,Wn] = buttord (Wp,Ws,Rp,Rs, 's")
Description
[n,Wn] = buttord (Wp,Ws,Rp,Rs) returns the lowest order, n, of the digital

Butterworth filter with no more than Rp dB of passband ripple and at least Rs dB of
attenuation in the stopband. Wp and Ws are respectively the passband and stopband edge
frequencies of the filter, normalized from O to 1, where 1 corresponds to 7 rad/sample.
The scalar (or vector) of corresponding cutoff frequencies, Wn, is also returned. To design
a Butterworth filter, use the output arguments n and Wn as inputs to butter.

[n,Wn] = buttord (Wp,Ws,Rp,Rs, 's") finds the minimum order n and cutoff
frequencies Wn for an analog Butterworth filter. Specify the frequencies Wp and Ws in
radians per second. The passband or the stopband can be infinite.

Examples

Lowpass Butterworth Filter

For data sampled at 1000 Hz, design a lowpass filter with no more than 3 dB of ripple in
a passband from 0 to 40 Hz, and at least 60 dB of attenuation in the stopband. Find the
filter order and cutoff frequency.

Wp = 40/500;
Ws = 150/500;

[n,Wn] = buttord (Wp,Ws,3,60)

1-105

1 Functions — Alphabetical List

n=>5

Wn = 0.0810

Specify the filter in terms of second-order sections and plot the frequency response.

[z,p, k] = butter(n,Wn);
sos = zp2sos(z,p,k);

freqgz (sos,512,1000)

title(sprintf('n = %d Butterworth Lowpass Filter',n))

n = 5 Butterworth Lowpass Filter

-100 | ———]

=200

=300

Magnitude (dB)

_4 DD i i i i
0 50 100 150 200 250 300 350

Frequency (Hz)

500

D T T T T T T T

=200

=400 T

Fhase (degrees)

—"E DD i i i i
0 50 100 150 200 250 300 350

Frequency (Hz)

1-106

450

500

buttord

Bandpass Butterworth Filter

Design a bandpass filter with a passband from 100 to 200 Hz with at most 3 dB of
passband ripple and at least 40 dB attenuation in the stopbands. Specify a sample rate of
1 kHz. Set the stopband width to 50 Hz on both sides of the passband. Find the filter
order and cutoff frequencies.

Wp = [100 200]/500;
Ws = [50 250]/500;
Rp = 3;
Rs = 40;
[n,Wn] = buttord (Wp,Ws,Rp,Rs)
n =8
in =
0.1951 0.4080

Specify the filter in terms of second-order sections and plot the frequency response.

[z,p, k] = butter (n,Wn);
sos = zp2sos(z,p,k);

freqz (sos,128,1000)
title(sprintf('n = %d Butterworth Bandpass Filter',n))

1-107

1 Functions — Alphabetical List

n = 8 Butterworth Bandpass Filter

T T T T T T T T

Magnitude (dB)

e R A

= = B3
/

_4 DD i i i i i i i i i
0 50 100 1500 200 250 300 350 400 450 500

Frequency (Hz)
1DDD T T T T T T T T T

500 T
AN

-500 [— -

Fhase (degrees)
o
!

_1 DD D i i i i i i i i i
0 50 100 1500 200 250 300 350 400 450 500

Frequency (Hz)

Input Arguments

Wp — Passband corner (cutoff) frequency
scalar | two-element vector

Passband corner (cutoff) frequency, specified as a scalar or a two-element vector with
values between 0 and 1, with 1 corresponding to the normalized Nyquist frequency,
rad/sample.

1-108

buttord

+ If wp and Ws are both scalars and Wp < Ws, then buttord returns the order and cutoff
frequency of a lowpass filter. The stopband of the filter ranges from Ws to 1 and the
passband ranges from 0 to Wp.

+ If wp and Ws are both scalars and Wp > Ws, then buttord returns the order and cutoff
frequency of a highpass filter. The stopband of the filter ranges from 0 to Ws and the
passband ranges from Wp to 1.

+ If wp and Ws are both vectors and the interval specified by Ws contains the one
specified by Wp (Ws (1) <Wp (1) <Wp (2) <Ws (2)), then buttord returns the order
and cutoff frequencies of a bandpass filter. The stopband of the filter ranges from 0 to
Ws (1) and from Ws (2) to 1. The passband ranges from Wp (1) to Wp (2).

+ If wp and Ws are both vectors and the interval specified by Wp contains the one
specified by Ws (Wp (1) <Ws (1) <Ws (2) <Wp(2)), then buttord returns the order
and cutoff frequencies of a bandstop filter. The stopband of the filter ranges from
Ws (1) toWs (2). The passband ranges from O to Wp (1) and from Wp (2) to 1.

Data Types: single | double

Note If your filter specifications call for a bandpass or bandstop filter with unequal
ripple in each of the passbands or stopbands, design separate lowpass and highpass
filters and cascade the two filters together.

Ws — Stopband corner frequency
scalar | two-element vector

Stopband corner frequency, specified as a scalar or a two-element vector with values
between 0 and 1, with 1 corresponding to the normalized Nyquist frequency, mr rad/
sample.

Data Types: single | double

Rp — Passband ripple
scalar

Passband ripple, specified as a scalar expressed in dB.

Data Types: single | double

Rs — Stopband attenuation
scalar

1-109

1 Functions — Alphabetical List

1-110

Stopband attenuation, specified as a scalar expressed in dB.

Data Types: single | double

Output Arguments

n — Lowest filter order
integer scalar

Lowest filter order, returned as an integer scalar.

wn — Cutoff frequencies
scalar | vector

Cutoff frequencies, returned as a scalar or vector.

Algorithms

buttord’s order prediction formula operates in the analog domain for both analog and
digital cases. For the digital case, it converts the frequency parameters to the s-domain
before estimating the order and natural frequency. The function then converts back to
the z-domain.

buttord initially develops a lowpass filter prototype by transforming the passband
frequencies of the desired filter to 1 rad/second (for lowpass and highpass filters) and to —
1 and 1 rad/second (for bandpass and bandstop filters). It then computes the minimum
order required for a lowpass filter to meet the stopband specification.

References

[1] Rabiner, Lawrence R., and Bernard Gold. Theory and Application of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975.

buttord

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™,

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not
change.

See Also
butter | cheblord | cheb2ord | ellipord | kaiserord

Introduced before R2006a

1-111

1 Functions — Alphabetical List

1-112

cceps

Complex cepstral analysis

Syntax

xhat = cceps (x)
[xhat,nd] = cceps(x)
[xhat,nd, xhatl] = cceps(x)

[...] = cceps(x,n)

Description

Cepstral analysis is a nonlinear signal processing technique that is applied most
commonly in speech processing and homomorphic filtering [1].

Note cceps only works on real data.

xhat = cceps (x) returns the complex cepstrum of the real data sequence x using the
Fourier transform. The input is altered, by the application of a linear phase term, to have
no phase discontinuity at +mr radians. That is, it is circularly shifted (after zero padding)
by some samples, if necessary, to have zero phase at 1 radians.

[xhat,nd] = cceps (x) returns the number of samples nd of (circular) delay added to
x prior to finding the complex cepstrum.

[xhat,nd, xhatl] = cceps (x) returns a second complex cepstrum, xhatl, computed
using an alternative factorization algorithm [1][2]. This method can be applied only to
finite-duration signals. See the Algorithm section below for a comparison of the Fourier
and factorization methods of computing the complex cepstrum.

[...] = cceps(x,n) zero pads x to length n and returns the length n complex
cepstrum of x.

cceps

Examples

Using cceps to show an echo

This example uses cceps to show an echo. Generate a sine of frequency 45 Hz, sampled
at 100 Hz. Add an echo with half the amplitude and 0.2 s later. Compute the complex
cepstrum of the signal. Notice the echo at 0.2 s.

Fs = 100;
t =0:1/Fs:1.27;

sl = sin(2*pi*45*t);

s2 = sl + 0.5*[zeros(1,20) s1(1:108)71;
c = cceps(s2);

plot(t,c)

xlabel ('Time (s) ')
title('Complex cepstrum')

1-113

1 Functions — Alphabetical List

Complex cepstrum
1 T T T T T T

0.5 7

l
0 ILWﬂwﬂwww\;ww\,wuﬂlﬂmﬂﬂ|||'||II."1| 1

05F 1
Ak E
_15 i i i i i i
0 0.2 0.4 0.6 0.8 1 1.2 1.4
Time (s)
Algorithms

cceps is an implementation of algorithm 7.1 in [3]. A lengthy Fortran program reduces
to these three lines of MATLAB code, which compose the core of cceps:

h = fft(x);

logh = log(abs(h)) + sgrt(-1)*rcunwrap (angle (h));
y = real (ifft(logh));

1-114

cceps

Note rcunwrap in the above code segment is a special version of unwrap that subtracts
a straight line from the phase. rcunwrap is a local function within cceps and is not
available for use from the MATLAB command line.

The following table lists the pros and cons of the Fourier and factorization algorithms.

Algorithm Pros Cons
Fourier Can be used for any signal. |Requires phase unwrapping.
Output 1s aliased.
Factorization Does not require phase Can be used only for short
unwrapping. No aliasing duration signals. Input signal

must have an all-zero Z-transform
with no zeros on the unit circle.

In general, you cannot use the results of these two algorithms to verify each other. You
can use them to verify each other only when the first element of the input data is
positive, the Z-transform of the data sequence has only zeros, all of these zeros are inside
the unit circle, and the input data sequence is long (or padded with zeros).

References
[1] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal
Processing. Upper Saddle River, NdJ: Prentice Hall, 1999, pp. 788-789.

[2] Steiglitz, K., and B. Dickinson. “Computation of the Complex Cepstrum by
Factorization of the Z-transform.” Proceedings of the 1977 IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 723—-726.

[3] Digital Signal Processing Committee of the IEEE Acoustics, Speech, and Signal

Processing Society, eds. Programs for Digital Signal Processing. New York: IEEE
Press, 1979.

See Also

hilbert | icceps | rceps | unwrap

Introduced before R2006a

1-115

1 Functions — Alphabetical List

1-116

cconv

Modulo-N circular convolution

Syntax

c = cconv(a,b,n)
c = cconv (gpuArrayA, gpulArrayB,n)
Description

Circular convolution is used to convolve two discrete Fourier transform (DFT) sequences.
For long sequences, circular convolution can be faster than linear convolution.

¢ = cconv(a,b,n) circularly convolves vectors a and b. n is the length of the resulting
vector. If you omit n, it defaults to length (a) +1length (b) -1. When n = length (a)
+length (b) -1, the circular convolution is equivalent to the linear convolution computed
with conv. You can also use cconv to compute the circular cross-correlation of two
sequences.

c = cconv (gpuArrayA,gpulArrayB, n) returns the circular convolution of the input
vectors of class gpuArray. See “Establish Arrays on a GPU” (Parallel Computing
Toolbox) for details on gpuArray objects. Using cconv with gpuArray objects requires
Parallel Computing Toolbox™ software and a CUDA-enabled NVIDIA GPU with
compute capability 1.3 or above. See GPU System Requirements for details. The output
vector, c, is a gpuArray object. See “Circular Convolution Using the GPU” on page 1-120
for an example of using the GPU to compute the circular convolution.

Examples

Circular Convolution

Generate two vectors and compute their modulo-4 circular convolution.

https://www.mathworks.com/products/availability.html#DM

cconv

’

a=1[2121]
= [1 2 3 4];
cconv (a,b,4)

Q O
([l

14 16 14 16

Circular Convolution and Linear Convolution

Generate two signals of different lengths. Compare their circular convolution and their
linear convolution. Use the default value for n.

a=[12-11];

b=1[11212211];

c = cconv(a,b); % Circular convolution
cref = conv(a,b); % Linear convolution

dif = norm(c-cref)
dif = 9.7422e-16

The resulting norm is virtually zero, which shows that the two convolutions produce the
same result to machine precision.

Circular Cross-Correlation

Generate two complex sequences. Use cconv to compute their circular cross-correlation.
Flip and conjugate the second operand to comply with the definition of cross-correlation.
Specify an output vector length of 7.

a=[122 1]1+11;
b=1[134 1]-2*11i;
c = cconv(a,con]j (fliplr(b)),7);

Compare the result to the cross-correlation computed using xcorr.

1-117

1 Functions — Alphabetical List

cref = xcorr(a,b);
dif = norm(c-cref)

dif = 3.3565e-15

Circular Convolution with Varying Output Length

Generate two signals: a five-sample triangular waveform and a first-order FIR filter with

= 1 o
response Hiz)=1-z7

xl = conv ([l 1 1],([1 1 1])

x1l =
1 2 3 2 1
x2 = [-1 1]
X2 =
-1 1

Compute their circular convolution with the default output length. The result is
equivalent to the linear convolution of the two signals.

ccnv = cconv (x1,x2)
ccnv =
-1.0000 -1.0000 -1.0000 1.0000 1.0000 1.0000
lcnv = conv (x1l,x2)
lcnv =
-1 -1 -1 1 1 1

1-118

cconv

The modulo-2 circular convolution is equivalent to splitting the linear convolution into

two-element arrays and summing the arrays.

ccn?2 = cconv(xl,x2,2)

ccn2 =

nl = numel (lcnv);

mod2 = sum(reshape(lcnv,2,nl/2)")

mod2 =

Compute the modulo-3 circular convolution and compare it to the aliased linear

convolution.

ccn3 = cconv(xl,x2,3)

ccn3 =

mod3 = sum(reshape(lcnv,3,nl/3)")

mod3 =

If the output length is smaller than the convolution length and does not divide it exactly,

pad the convolution with zeros before adding.

= 5;

c
z = zeros(c*ceil(nl/c),1);
z

(l:nl) = lcnv;

ccnc = cconv(xl,x2,c)

1-119

1 Functions — Alphabetical List

cecnce =

0.0000 -1.0000 -1.0000 1.0000 1.0000

modc = sum(reshape (z,c,numel (z)/c)"')

modc =

If the output length is equal to or larger than the convolution length, pad the convolution
and do not add.

d = 13;
z = zeros(d*ceil(nl/d),1);
z(l:nl) = lcnv;

ccnd = cconv(xl,x2,d)

ccnd
Columns 1 through 7
-1.0000 -1.0000 -1.0000 1.0000 1.0000 1.0000 0.0000
Columns 8 through 13

-0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000

modd = z'

modd

1-120

cconv

Circular Convolution Using the GPU

The following example requires Parallel Computing Toolbox software and a CUDA-
enabled NVIDIA GPU with compute capability 1.3 or above. See GPU System
Requirements for details.

Create two signals consisting of a 1 kHz sine wave in additive white Gaussian noise. The
sample rate 1s 10 kHz

Fs = 1le4;

t 0:1/Fs:10-(1/Fs);

X cos (2*pi*le3*t)+randn(size(t))
% sin(2*pi*le3*t)+randn(size(t))

’
’

Put x and y on the GPU using gpuArray. Obtain the circular convolution using the
GPU.

X = gpuArray (x);
y = gpuArray(y);
cirC = cconv(x,y,length(x)+length(y)-1);

Compare the result to the linear convolution of x and y.

1linC = conv(x,V);
norm(linC-cirC, 2)

Return the circular convolution, circC, to the MATLAB workspace using gather.

cirC = gather (cirC);

References

[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Englewood Cliffs, NdJ:
Prentice-Hall, 1996, pp. 524-529.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1-121

https://www.mathworks.com/products/availability.html#DM
https://www.mathworks.com/products/availability.html#DM

1 Functions — Alphabetical List

See Also

conv | xcorr

Introduced in R2007a

1-122

cell2sos

cell2sos

Convert second-order sections cell array to matrix

Syntax

m = cell2sos (c)

Description

m = cell2sos (c) changes a 1-by-L cell array c consisting of 1-by-2 cell arrays into an
L-by-6 second-order section matrix m. Matrix m takes the same form as the matrix
generated by t£2sos. You can use m = cell2sos(c) to invert the results of

c=sos2cell (m).

c must be a cell array of the form

c = { {bl al} {b2 a2} ... {bL al} }

where both bi and ai are row vectors of at most length 3, and i =1, 2, ..., L. The
resulting matrix m is given by

m = [bl al;b2 a2; ... ;bL al]

Examples

Second-Order Sections from Cell Array Input

Generate a cell array of 1-by-2 cell arrays of 1-by-3 row vectors. Convert it to a matrix of
second-order sections.

cll = {{[3 6 7] [1 1 21}
{1 4 5] [1 9 3]}
{2 7 11 [1 7 8]}};
sos = cell2sos(cll)

1-123

1 Functions — Alphabetical List

SOS =

I 4 s
7 1
See Also

sos2cell | tf2sos

Introduced before R2006a

1-124

~J O =

cfirpm

cfirpm

Complex and nonlinear-phase equiripple FIR filter design

Syntax

= cfirpm
= cfirpm
= cfirpm
= cfirpm

= cfirpm(..

= cfirpm

= cfirpm(..

b,delta]

b,delta, opt]

Description

o= Re e
|—h|—h'—h|—h

b (

b (

b (

b (

b = cfirpm(..
b (

b (.

b (

[=

[

, @fresp)
@fresp, w)

aw)

., "sym")
., 'skip stage2')

, 'debug’)

.,{lgrld}
cfirpm(...)
= cflrpm(..J

cfirpm allows arbitrary frequency-domain constraints to be specified for the design of a

possibly complex FIR filter. The Chebyshev (or minimax) filter error is optimized,

producing equiripple FIR filter designs.

b = cfirpm(n, f, @fresp) returns a length n+1 FIR filter with the best approximation
to the desired frequency response as returned by function fresp, which is called by its
function handle (@fresp). f is a vector of frequency band edge pairs, specified in the

range -1 and 1, where 1 corresponds to the normalized Nyquist frequency. The

frequencies must be in increasing order, and £ must have even length. The frequency

bands span £ (k) to £ (k+1) for k odd; the intervals £ (k+1) to £ (k+2) for k odd are
“transition bands” or “don't care” regions during optimization.

Predefined fresp frequency response functions are included for a number of common
filter designs, as described below. (See “Create Function Handle” (MATLAB) for more

information on how to create a custom fresp function.) For all of the predefined
frequency response functions, the symmetry option 'sym' defaults to 'even'

negative frequencies are contained in £ and d = 0; otherwise 'sym' defaults to 'none’.

1-125

1 Functions — Alphabetical List

1-126

(See the 'sym' option below for details.) For all of the predefined frequency response
functions, d specifies a group-delay offset such that the filter response has a group delay
of n/2+d in units of the sample interval. Negative values create less delay; positive
values create more delay. By default d = 0:

@lowpass, @highpass, @allpass, @bandpass, @bandstop

These functions share a common syntax, exemplified below by @lowpass.

b cfirpm(n, f,@lowpass, ...) and

b = cfirpm(n, f, {@lowpass,d}, ...) design a linear-phase (n/2+d delay) filter.

Note For @bandpass filters, the first element in the frequency vector must be less
than or equal to zero and the last element must be greater than or equal to zero.

@multiband designs a linear-phase frequency response filter with arbitrary band
amplitudes.

b = cfirpm(n, £, {@multiband,a},...) and

b = cfirpm(n, f, {@multiband, a,d}, ...) specify vector a containing the desired
amplitudes at the band edges in f. The desired amplitude at frequencies between
pairs of points £ (k) and £ (k+1) for k odd is the line segment connecting the points
(f(k),a(k)) and (£ (k+1),a(k+1)).

@differentiator designs a linear-phase differentiator. For these designs, zero-
frequency must be in a transition band, and band weighting is set to be inversely
proportional to frequency.

b = cfirpm(n, f, {@differentiator, fs},...) and

b cfirpm(n, f, {@differentiator, fs,d}, ...) specify the sample rate fs
used to determine the slope of the differentiator response. If omitted, £s defaults to 1.

@hilbfilt designs a linear-phase Hilbert transform filter response. For Hilbert
designs, zero-frequency must be in a transition band.

b

cfirpm(n, f,@hilbfilt,...) and

b = cfirpm(N,F, {@hilbfilt,d},...) design a linear-phase (n/2+d delay)
Hilbert transform filter.

cfirpm

* Qinvsinc designs a linear-phase inverse-sinc filter response.
b = cfirpm(n, f, {@invsinc,a},...) and

b = cfirpm(n, f, {@invsinc,a,d}, ...) specify gain a for the sinc function,
computed as sinc(a*g), where g contains the optimization grid frequencies normalized
to the range [-1,1]. By default, a = 1. The group-delay offset is d, such that the filter
response will have a group delay of N/2 + d in units of the sample interval, where N is
the filter order. Negative values create less delay and positive values create more
delay. By default, d = 0.

b = cfirpm(n, £, @fresp,w) uses the real, nonnegative weights in vector w to weight
the fit in each frequency band. The length of w is half the length of £, so there is exactly
one weight per band.

b cfirpm(n, f,a) is a synonym forb = cfirpm(n, f, {@multiband, a}).

b cfirpm(n, f,a,w) applies an optional set of positive weights, one per band, for use
during optimization. If w is not specified, the weights are set to unity.

b = cfirpm(..., 'sym') imposes a symmetry constraint on the impulse response of
the design, where 'sym' may be one of the following:

* 'none' indicates no symmetry constraint. This is the default if any negative band
edge frequencies are passed, or if fresp does not supply a default.

* 'even' indicates a real and even impulse response. This is the default for highpass,
lowpass, allpass, bandpass, bandstop, inverse-sinc, and multiband designs.

+ 'odd' indicates a real and odd impulse response. This is the default for Hilbert and
differentiator designs.

* 'real' indicates conjugate symmetry for the frequency response

If any 'sym' option other than 'none' is specified, the band edges should be specified
only over positive frequencies; the negative frequency region is filled in from symmetry.
If a "sym’ option is not specified, the fresp function is queried for a default setting. Any
user-supplied fresp function should return a valid 'sym' option when it is passed
'"defaults' as the filter order N.

b = cfirpm(..., 'skip stage2') disables the second-stage optimization algorithm,
which executes only when cfirpm determines that an optimal solution has not been

1-127

1 Functions — Alphabetical List

1-128

reached by the standard f£irpm error-exchange. Disabling this algorithm may increase
the speed of computation, but may incur a reduction in accuracy. By default, the second-
stage optimization is enabled.

b = cfirpm(..., "debug’) enables the display of intermediate results during the
filter design, where 'debug' may be one of 'trace’', 'plots', '"both', or 'off'. By
default it is set to 'of f"'.

b = cfirpm(..., {lgrid}) uses the integer 1grid to control the density of the
frequency grid, which has roughly 2*nextpow2 (1grid*n) frequency points. The default
value for 1gridis 25. Note that the {1grid} argument must be a 1-by-1 cell array.

Any combination of the 'sym’, 'skip stage2', 'debug’, and {1lgrid} options may be
specified.

[b,delta] = cfirpm(...) returns the maximum ripple height delta.
[b,delta,opt] = cfirpm(...) returns a structure opt of optional results computed
by cfirpm and contains the following fields.

Field Description

opt.fgrid Frequency grid vector used for the filter design optimization
opt.des Desired frequency response for each point in opt. fgrid
opt.wt Weighting for each point in opt.fgrid

opt.H Actual frequency response for each point in opt. fgrid
opt.error Error at each point in opt . fgrid

opt.iextr Vector of indices into opt . fgrid for extremal frequencies
opt.fextr Vector of extremal frequencies

User-definable functions may be used, instead of the predefined frequency response
functions for @ fresp. The function is called from within cfirpm using the following
syntax

[dh,dw] = fresp(n,f,gf,w,pl,p2,...)
where:

* nis the filter order.

cfirpm

+ £ is the vector of frequency band edges that appear monotonically between -1 and 1,
where 1 corresponds to the Nyquist frequency.

* gf is a vector of grid points that have been linearly interpolated over each specified
frequency band by cfirpm. gf determines the frequency grid at which the response
function must be evaluated. This is the same data returned by cfirpmin the fgrid
field of the opt structure.

+ wis a vector of real, positive weights, one per band, used during optimization. w is
optional in the call to cfirpm; if not specified, it is set to unity weighting before being
passed to fresp.

* dh and dw are the desired complex frequency response and band weight vectors,
respectively, evaluated at each frequency in grid gf.

* pl,p2, ..., areoptional parameters that may be passed to fresp.

Additionally, a preliminary call is made to fresp to determine the default symmetry
property 'sym'. This call is made using the syntax:

sym = fresp('defaults',{n,f,[],w,pl,p2,...})

The arguments may be used in determining an appropriate symmetry default as
necessary. The function private/lowpass.m may be useful as a template for
generating new frequency response functions.

Examples

Equiripple Lowpass Filter

Design a 31-tap linear-phase lowpass filter. Display its magnitude and phase responses.

b = cfirpm (30, [-1 -0.5 -0.4 0.7 0.8 1],@lowpass);
fvtool (b, 1, 'OverlayedAnalysis', 'phase')

1-129

1 Functions — Alphabetical List

Magnitude Response (dB) and Phase Response

of —_— 1 23.959
J\\[\‘-’\“;\\[\\I\q\‘[\) _\\'l
N '.
A0 [N \ 1 14635
\‘\\ I|
20 ¢ l] 1 5311
s -
— | ", ¢
3 | N E
@ 30 - RN 14013 @
El AN A NN \ N k]
2 A \ /(| (
E | ANl ! \ || I t
% 40 | | A \ 1-13.337 |
= ” | N ‘ | | c
'\.\
Y
-50 N H -22.661
\\\
60 N H -31.985
hill
4 08 06 04 02 0 02 04 06 08 1

Mormalized Frequency (=7 rad/sample)

FIR Approximation to Allpass Response

Design a nonlinear-phase allpass FIR filter of order 22 with frequency response given

approximately by S*P' —JjafN /2 + jdaf|f | where fe -1

n = 22; % Filter order

f=1[-11]; % Frequency band edges

w = [11]; % Weights for optimization
gf = linspace(-1,1,256); % Grid of frequency points
d_

1-130

S

o

= exp(-li*pi*gf*n/2 + li*pi*pi*sign(gf).*gf.*gf* (4/pi));

Desired frequency response

cfirpm

Use cfirpm to compute the FIR filter. Plot the actual and approximate magnitude
responses in dB and the phase responses in degrees.

b = cfirpm(n, f, 'allpass',w, 'real'); % Approximation
freqz(b,1,256, "'whole")

subplot(2,1,1) % Overlay response
hold on

plot (pi* (gf+1l),20*1ogl0 (abs (fftshift(d))), '=z—-")

subplot(2,1,2)

hold on

plot (pi* (gf+1) ,unwrap (angle (fftshift(d)))*180/pi, 'r--")

legend ('Approximation', 'Desired', 'Location', 'SouthWest')
0.2

Magnitude (dB)
=

\/

AN

w \/ / f‘*

\J\’“

0.2
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Mormalized Frequency (= rad/sample)
D - :_: ¥ — T T T T T T T T
w T T T - _
2 i
= -1000 — ~
@ .
= T
® 2000 - T :
E B Approximation "‘-=._H~
o — — — Desired -
—EDDD i i i i i i i i i
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Mormalized Frequency (= rad/sample)

1-131

1 Functions — Alphabetical List

1-132

Algorithms

An extended version of the Remez exchange method is implemented for the complex case.
This exchange method obtains the optimal filter when the equiripple nature of the filter
is restricted to have n+2 extremals. When it does not converge, the algorithm switches to
an ascent-descent algorithm that takes over to finish the convergence to the optimal
solution. See the references for further details.

References

[1] Karam, L.J., and J.H. McClellan. “Complex Chebyshev Approximation for FIR Filter
Design.” IEEE Trans. on Circuits and Systems I, March 1995. Pgs. 207-216.

[2] Karam, L.J. Design of Complex Digital FIR Filters in the Chebyshev Sense, Ph.D.
Thesis, Georgia Institute of Technology, March 1995.

[3] Demjanjov, V.F., and V.N. Malozemov. Introduction to Minimax, New York: John
Wiley & Sons, 1974.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™,

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not
change.

See Also
firl | fir2 | firls | firpm

cfirpm

Introduced before R2006a

1-133

1 Functions — Alphabetical List

1-134

cheb1ap

Chebyshev Type I analog lowpass filter prototype

Syntax

[z,p, k] = cheblap(n,Rp)

Description

[z,p, k] = cheblap (n,Rp) returns the poles and gain of an order n Chebyshev Type I
analog lowpass filter prototype with Rp dB of ripple in the passband. The function
returns the poles in the length n column vector p and the gain in scalar k. z is an empty
matrix, because there are no zeros. The transfer function is

2s) k

H(s) = =
p(s) (s=pD)s—p(2)...(s— pn))

Chebyshev Type I filters are equiripple in the passband and monotonic in the stopband.
The poles are evenly spaced about an ellipse in the left half plane. The Chebyshev Type I
passband edge angular frequency w, is set to 1.0 for a normalized result. This is the
frequency at which the passband ends and the filter has magnitude response of 10-E/20,

Examples

Frequency Response of an Analog Chebyshev Type | Filter

Design a 6th-order Chebyshev Type I analog lowpass filter with 3 dB of ripple in the
passband. Display its magnitude and phase responses.

[z,p, k] = cheblap(6,3):; % Lowpass filter prototype
[num,den] = zp2tf(z,p,k); % Convert to transfer function form
fregs (num, den) % Frequency response of analog filter

cheb1ap

Magnitude

Fhase (degrees)

200

107"

10°
Frequency (rad/s)

107

100

100

-200

1072

107"

References

10°
Frequency (rad/s)

[1] Parks, Thomas W., and C. Sidney Burrus. Digital Filter Design. New York: John
Wiley & Sons, 1987, chap. 7.

1-135

1 Functions — Alphabetical List

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™,

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not
change.

See Also
besselap | buttap | cheb2ap | chebyl | ellipap

Introduced before R2006a

1-136

cheb1ord

cheb1ord

Chebyshev Type I filter order

Syntax

[n,Wp] = cheblord (Wp,Ws,Rp,Rs)
cheblord (Wp,Ws,Rp,Rs, 's"'")

)
=

'S
I

Description

cheblord calculates the minimum order of a digital or analog Chebyshev Type I filter
required to meet a set of filter design specifications.

Digital Domain

[n,Wp] = cheblord(Wp,Ws,Rp,Rs) returns the lowest order n of the Chebyshev
Type I filter that loses no more than Rp dB in the passband and has at least Rs dB of
attenuation in the stopband. The scalar (or vector) of corresponding cutoff frequencies Wp,
is also returned. Use the output arguments n and Wp with the cheby1 function.

Choose the input arguments to specify the stopband and passband according to the
following table.

1-137

1 Functions — Alphabetical List

Description of Stopband and Passband Filter Parameters

Parameter Description

Wp Passband corner frequency Wp, the cutoff frequency, is a scalar or
a two-element vector with values between 0 and 1, with 1
corresponding to the normalized Nyquist frequency, m radians per
sample.

Ws Stopband corner frequency Ws, is a scalar or a two-element vector
with values between 0 and 1, with 1 corresponding to the
normalized Nyquist frequency.

Rp Passband ripple, in decibels. This value is the maximum
permissible passband loss in decibels.

Rs Stopband attenuation, in decibels. This value is the number of
decibels the stopband is down from the passband.

Use the following guide to specify filters of different types.
Filter Type Stopband and Passband Specifications

Filter Type Stopband and Passband Conditions |Stopband Passband
Lowpass Wp < Ws, both scalars (Ws, 1) (0, Wp)
Highpass Wp > Ws, both scalars (0,Ws) (Wp, 1)
Bandpass The interval specified by Ws contains | (0, Ws (1)) and | (Wp (1) ,Wp(2))
the one specified by Wp (Ws (1) < (Ws(2),1)
Wp(l) < Wp(2) < Ws(2)).
Bandstop The interval specified by Wp contains | (0, Wp (1)) and | (Ws (1) ,Ws(2))
the one specified by Ws (Wp (1) < (Wp(2),1)

Ws (1) < Ws(2) < Wp(2)).

If your filter specifications call for a bandpass or bandstop filter with unequal ripple in
each of the passbands or stopbands, design separate lowpass and highpass filters
according to the specifications in this table, and cascade the two filters together.

Analog Domain
[n,Wp] = cheblord(Wp,Ws,Rp,Rs, 's') finds the minimum order n and cutoff

frequencies Wp for an analog Chebyshev Type I filter. You specify the frequencies Wp and
Ws similar to those described in the Description of Stopband and Passband Filter

1-138

cheb1ord

Parameters table above, only in this case you specify the frequency in radians per second,
and the passband or the stopband can be infinite.

Use cheblord for lowpass, highpass, bandpass, and bandstop filters as described in the
Filter Type Stopband and Passband Specifications table above.

Examples

Chebyshev Type | Filter Design

For data sampled at 1000 Hz, design a lowpass filter with less than 3 dB of ripple in the
passband defined from 0 to 40 Hz and at least 60 dB of ripple in the stopband defined
from 150 Hz to the Nyquist frequency.

Wp = 40/500;

Ws = 150/500;

Rp = 3;

Rs = 60;

[n,Wp] = cheblord (Wp,Ws,Rp,Rs)
n =14

Wp = 0.0800
[b,a] = chebyl (n,Rp,Wp);

freqz(b,a,512,1000)
title('n = 4 Chebyshev Type I Lowpass Filter')

1-139

1 Functions — Alphabetical List

n = 4 Chebyshev Type | Lowpass Filter

100 1 TTT——

=200

Magnitude (dB)

_3 DD i i i i i i i i
100 150 200 250 300 350

Frequency (Hz)

D T T T T T T T T

100 1

=200

-300

Fhase (degrees)

_‘4 DD i i i i i i i i
100 1500 200 250 300 350 400

Frequency (Hz)

450

500

Design a bandpass filter with a passband of 60 Hz to 200 Hz, with less than 3 dB of
ripple in the passband, and 40 dB attenuation in the stopbands that are 50 Hz wide on

both sides of the passband.

Wp = [60 200]/500;

Ws = [50 250]/500;

Rp = 3;

Rs = 40;

[n,Wp] = cheblord (Wp,Ws,Rp,Rs)
n =717

Wp =

1-140

cheb1ord

Magnitude (dB)

Fhase (degrees)

0.1200 0.4000

[b,a] = chebyl (n,Rp,Wp);
freqz(b,a,512,1000)

7 Chebyshev Type I Bandpass Filter')

title('n =
n =7 Chebyshev Type | Bandpass Filter
D ;/n' T T r'\-\.______ T T T T T
e T
200 3/ e T
-400
—’EDD i i i i i i i i i
0 50 100 150 200 250 300 350 400 450 500
Frequency (Hz)
D _ T T T T T T T T
T T
-500 | \ -
HH____%
~_
-1000 \ T
_1 SDD i i i i i i i i i
0 50 100 150 200 250 300 350 400 450 500
Frequency (Hz)
Algorithms

cheblord uses the Chebyshev lowpass filter order prediction formula described in [1].
The function performs its calculations in the analog domain for both analog and digital

1-141

1 Functions — Alphabetical List

1-142

cases. For the digital case, it converts the frequency parameters to the s-domain before
the order and natural frequency estimation process, and then converts them back to the
z-domain.

cheblord initially develops a lowpass filter prototype by transforming the passband
frequencies of the desired filter to 1 rad/s (for low- or highpass filters) or to -1 and 1 rad/s
(for bandpass or bandstop filters). It then computes the minimum order required for a
lowpass filter to meet the stopband specification.

References

[1] Rabiner, Lawrence R., and Bernard Gold. Theory and Application of Digital Signal
Processing. Englewood Cliffs, NdJ: Prentice-Hall, 1975.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not
change.

See Also

buttord | cheb2ord | chebyl | ellipord | kaiserord

Introduced before R2006a

cheb2ap

cheb2ap

Chebyshev Type II analog lowpass filter prototype

Syntax

[z,p, k] = chebap(n,Rs)
Description
[z,p,k] = cheb2ap(n,Rs) finds the zeros, poles, and gain of an order n Chebyshev

Type II analog lowpass filter prototype with stopband ripple Rs dB down from the
passband peak value. cheb2ap returns the zeros and poles in length n column vectors z
and p and the gain in scalar k. If n is odd, z is length n-1. The transfer function is
His) = zls) _ k (g —zilNie—=zi2Y)---(e—zin))

pls) (g—piliis— p(2)) (= - p(n))

Chebyshev Type II filters are monotonic in the passband and equiripple in the stopband.
The pole locations are the inverse of the pole locations of cheblap, whose poles are
evenly spaced about an ellipse in the left half plane. The Chebyshev Type II stopband
edge angular frequency w, is set to 1 for a normalized result. This is the frequency at
which the stopband begins and the filter has magnitude response of 10Rs/20,

Examples

Frequency Response of an Analog Chebyshev Type |l Filter

Design a 6th-order Chebyshev Type II analog lowpass filter with 70 dB of ripple in the
stopband. Display its magnitude and phase responses.

[z,p, k] = cheb2ap(6,70); % Lowpass filter prototype
[num,den] = zp2tf(z,p,k); % Convert to transfer function form
fregs (num, den) % Frequency response of analog filter

1-143

1 Functions — Alphabetical List

Magnitude

107"
Frequency (rad/s)

200

100

100

Fhase (degrees)
o
|

200
1072

Algorithms

107"

Frequency (rad/s)

100

Chebyshev Type II filters are sometimes called inverse Chebyshev filters because of their
relationship to Chebyshev Type I filters. The cheb2ap function is a modification of the

Chebyshev Type I prototype algorithm:

1 cheb2ap replaces the frequency variable @ with 1/, turning the lowpass filter into a
highpass filter while preserving the performance at o = 1.

2 cheb2ap subtracts the filter transfer function from unity.

1-144

cheb2ap

References

[1] Parks, Thomas W., and C. Sidney Burrus. Digital Filter Design. New York: John
Wiley & Sons, 1987, chap. 7.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™,

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not
change.

See Also

besselap | buttap | cheblap | cheby2 | ellipap

Introduced before R2006a

1-145

1 Functions — Alphabetical List

1-146

cheb2ord

Chebyshev Type II filter order

Syntax

[n,Ws] = cheb2ord (Wp,Ws,Rp, Rs)
cheb2ord (Wp,Ws,Rp,Rs, 's")

=)
=
@]

I

Description

cheb2ord calculates the minimum order of a digital or analog Chebyshev Type II filter
required to meet a set of filter design specifications.

Digital Domain

[n,Ws] = cheb2ord (Wp,Ws,Rp,Rs) returns the lowest order n of the Chebyshev Type
II filter that loses no more than Rp dB in the passband and has at least Rs dB of
attenuation in the stopband. The scalar (or vector) of corresponding cutoff frequencies Ws,
1s also returned. Use the output arguments n and Ws in cheby2.

Choose the input arguments to specify the stopband and passband according to the
following table.

cheb2ord

Description of Stopband and Passband Filter Parameters

Parameter Description

Wp Passband corner frequency Wp, the cutoff frequency, is a scalar or a
two-element vector with values between 0 and 1, with 1
corresponding to the normalized Nyquist frequency, o radians per
sample.

Ws Stopband corner frequency Ws, is a scalar or a two-element vector
with values between 0 and 1, with 1 corresponding to the normalized
Nyquist frequency.

Rp Passband ripple, in decibels. This value is the maximum permissible
passband loss in decibels.

Rs Stopband attenuation, in decibels. This value is the number of

decibels the stopband is down from the passband.

Use the following guide to specify filters of different types.
Filter Type Stopband and Passband Specifications

Filter Type Stopband and Passband Conditions Stopband Passband
Lowpass Wp < Ws, both scalars (Ws, 1) (0, Wp)
Highpass Wp > Ws, both scalars (0,Ws) (Wp, 1)
Bandpass The interval specified by Ws contains | (0, Ws (1)) and | (Wp (1) ,Wp (2))
the one specified by Wp (Ws (1) < (Ws (2),1)
Wp(l) < Wp(2) < Ws(2)).
Bandstop The interval specified by Wp contains | (0, Wp (1)) and | (Ws (1) ,Ws (2))

the one specified by Ws (Wp (1) <
Ws (1) < Ws(2) < Wp(2)).

)
(Wp(2),1)

If your filter specifications call for a bandpass or bandstop filter with unequal ripple in
each of the passbands or stopbands, design separate lowpass and highpass filters
according to the specifications in this table, and cascade the two filters together.

Analog Domain

[n,Ws] =
frequencies Ws for an analog Chebyshev Type II filter. You specify the frequencies Wp and
Ws similar to those described in the Description of Stopband and Passband Filter

cheb2ord (Wp, Ws,Rp,Rs, 's') finds the minimum order n and cutoff

1-147

1 Functions — Alphabetical List

Parameters table above, only in this case you specify the frequency in radians per second,
and the passband or the stopband can be infinite.

Use cheb2ord for lowpass, highpass, bandpass, and bandstop filters as described in the
Filter Type Stopband and Passband Specifications table above.

Examples

Chebyshev Type |l Filter Design

For data sampled at 1000 Hz, design a lowpass filter with less than 3 dB of ripple in the
passband defined from 0 to 40 Hz, and at least 60 dB of attenuation in the stopband
defined from 150 Hz to the Nyquist frequency.

Wp = 40/500;

Ws = 150/500;

Rp = 3;

Rs = 60;

[n,Ws] = cheb2ord (Wp,Ws,Rp,Rs)
n = 4

Ws = 0.3000

[b,a] = cheby2(n,Rs,Ws);

freqz(b,a,512,1000)
title('n = 4 Chebyshev Type II Lowpass Filter')

1-148

cheb2ord

Magnitude (dB)

Fhase (degrees)

n = 4 Chebyshev Type Il Lowpass Filter

0 =T T
.
S
.,
e
=50 1 1 T
' T —
i' '
-100 [T
_1 ED i i i i i i i i i
0 50 100 150 200 250 300 350 400 450 500
Frequency (Hz)
EDD T T T T T T T T T
D (
200 | ’ — -
_‘4 DD i i i i i i i i i
0 50 100 150 200 250 300 350 400 450 500

Frequency (Hz)

Design a bandpass filter with a passband of 60 Hz to 200 Hz, with less than 3 dB of
ripple in the passband, and 40 dB attenuation in the stopbands that are 50 Hz wide on
both sides of the passband:

Wp
Ws

Rp
Rs

[n
n

Ws

[60 200]/500;
[50 250]/500;
= 3;
40;

,Ws] = cheb2ord (Wp,Ws,Rp,Rs)

=7

1-149

1 Functions — Alphabetical List

Magnitude (dB)

Fhase (degrees)

1-150

0.1000 0.5000

[b,a] cheby2 (n,Rs,Ws) ;

freqgz(b,a,512,1000)

title('n = 7 Chebyshev Type II Bandpass Filter')
n =7 Chebyshev Type Il Bandpass Filter
'1 D D T T T T T T T T T
or d/‘ - 7
v \("v’ — —
-100 [Yd_— T
-200 [T
_3 DD i 1 1 1 1 1 1 i 1
0 50 100 150 200 250 300 350 400 450 500
Frequency (Hz)
4':”} T T T T T T T T
200 [N _
'-\.___H I--""--________. ——
200 F \I’“"~I 1
_‘4 DD i i i i i i i i
0 50 100 150 200 250 300 350 400 450 500
Frequency (Hz)
Algorithms

cheb2ord uses the Chebyshev lowpass filter order prediction formula described in [1].
The function performs its calculations in the analog domain for both analog and digital

cheb2ord

cases. For the digital case, it converts the frequency parameters to the s-domain before
the order and natural frequency estimation process, and then converts them back to the
z-domain.

cheb2ord initially develops a lowpass filter prototype by transforming the stopband
frequencies of the desired filter to 1 rad/s (for low- and highpass filters) and to -1 and 1
rad/s (for bandpass and bandstop filters). It then computes the minimum order required
for a lowpass filter to meet the passband specification.

References

[1] Rabiner, Lawrence R., and Bernard Gold. Theory and Application of Digital Signal
Processing. Englewood Cliffs, NdJ: Prentice-Hall, 1975.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not
change.

See Also

buttord | cheblord | cheby2 | ellipord | kaiserord

Introduced before R2006a

1-151

1 Functions — Alphabetical List

chebwin

Chebyshev window

Syntax

w = chebwin (L, r)

Description

w = chebwin (L, r) returns the column vector w containing the length 1. Chebyshev
window whose Fourier transform sidelobe magnitude is r dB below the mainlobe
magnitude. The default value for r is 100.0 dB.

Note If you specify a one-point window (set L=1), the value 1 is returned.

Examples

Chebyshev Window

Create a 64-point Chebyshev window with 100 dB of sidelobe attenuation. Display the
result using wvtool.

L = 64;

bw = chebwin (L) ;
wvtool (bw)

1-152

chebwin

TFI'_'I'II-%I Window Visualization Tool R EN
File Edit Wiew Insert Tools Window Help L]
S| hOTNNNH| &< & E K
Window Viewer
Time domain e Fregquency domain
1 20 '\
\
0.8 0 '.II
— 1
8 g2
206 @ '
g I
E = [
< g
0.4 = -60
a0 'IITn | | I |f'||"| ||||r' ‘r |I|r\'||"'|ln
il [H| |
=100
0 =120 .
10 20 30 40 50 &0 0 06 08
Samples Nomalized Frequean [== radisample)
Leakage Factor: 0 % Relative sidelobe attenustion: -100 dBE Mainlobe width (-3dBY 00546558

Algorithms

An artifact of the equiripple design method used in chebwin is the presence of impulses
at the endpoints of the time-domain response. This is due to the constant-level sidelobes
in the frequency domain. The magnitude of the impulses are on the order of the size of
the spectral sidelobes. If the sidelobes are large, the effect at the endpoints may be
significant. For more information on this effect, see [2].

The equivalent noise bandwidth of a Chebyshev window does not grow monotonically
with increasing sidelobe attenuation when the attenuation is smaller than about 45 dB.

For spectral analysis, use larger sidelobe attenuation values, or, if you need to work with
small attenuations, use a Kaiser window.

1-153

1 Functions — Alphabetical List

1-154

References

[1] Digital Signal Processing Committee of the IEEE Acoustics, Speech, and Signal
Processing Society, eds. Programs for Digital Signal Processing. New York: IEEE
Press, 1979, program 5.2.

[2] Harris, Fredric J. Multirate Signal Processing for Communication Systems. Upper
Saddle River, NdJ: Prentice Hall PTR, 2004, pp. 60—64.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™,

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not
change.

See Also

Apps
Window Designer

Functions
gausswin | kaiser | tukeywin | window | wvtool

Introduced before R2006a

cheby1

cheby1

Chebyshev Type I filter design

Syntax

[b,a] = chebyl (n,Rp, Wp)
chebyl (n, Rp, Wp, ftype)

o
©
Il

[z,p, k] = chebyl()

[A,B,C,D] = chebyl ()

[1 = chebyl(,'s")

Description

[b,a] = chebyl (n,Rp,Wp) returns the transfer function coefficients of an nth-order
lowpass digital Chebyshev Type I filter with normalized passband edge frequency Wp and
Rp decibels of peak-to-peak passband ripple.

[b,a] = chebyl (n,Rp,Wp, ftype) designs a lowpass, highpass, bandpass, or
bandstop Chebyshev Type I filter, depending on the value of £type and the number of
elements of Wp. The resulting bandpass and bandstop designs are of order 2n.

Note: See “Limitations” on page 1-165 for information about numerical issues that
affect forming the transfer function.

[z,p, k] = chebyl() designs a lowpass, highpass, bandpass, or bandstop digital

Chebyshev Type I filter and returns its zeros, poles, and gain. This syntax can include
any of the input arguments in previous syntaxes.

[A,B,C,D] = chebyl() designs a lowpass, highpass, bandpass, or bandstop

digital Chebyshev Type I filter and returns the matrices that specify its state-space
representation.

1-155

1 Functions — Alphabetical List

1-156

[] = chebyl (, 's') designs a lowpass, highpass, bandpass, or bandstop

a@g Chebyshev Type I filter with passband edge angular frequency Wp and Rp decibels
of passband ripple.

Examples

Lowpass Chebyshev Type | Transfer Function
Design a 6th-order lowpass Chebyshev Type I filter with 10 dB of passband ripple and a
passband edge frequency of 300 Hz, which, for data sampled at 1000 Hz, corresponds to

0.6x rad/sample. Plot its magnitude and phase responses. Use it to filter a 1000-sample
random signal.

[b,a] = chebyl(6,10,0.06);
freqgz (b, a)

cheby1

Magnitude (dB)

Fhase (degrees)

D —T T - — T — "1.,___\- T T T
-100 F T
-200 [.
-300
—4':“} i i i i i i i i i
0 0.1 02 03 04 05 06 07 08 09 1
Mormalized Frequency (= rad/sample)
D —I—_____\- T T T T T T T T
-200 ____“'\ :
-400 | \ 1
(N
—EDD i i i i i i i i i
0 0.1 02 03 04 05 06 07 08 09 1
Mormalized Frequency (= rad/sample)
dataIn = randn(1000,1);

dataOut = filter(b,a,dataln);

Bandstop Chebyshev Type | Filter

Design a 6th-order Chebyshev Type I bandstop filter with normalized edge frequencies of

027 5pq 0.6m rad/sample and 5 dB of passband ripple. Plot its magnitude and phase

responses. Use it to filter random data.

[b,a]l] = chebyl(3,5,[0.2 0.6],'"'stop");
freqz (b, a)

1-157

1 Functions — Alphabetical List

Magnitude (dB)

Fhase (degrees)

1-158

\

100 1

150 | ’ -

_2 DD i i i i i i i i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mormalized Frequency (= rad/sample)

100 | >

-300 T— 7

—4':“} i i i i i i i i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mormalized Frequency (= rad/sample)

dataIn = randn(1000,1);
dataOut = filter(b,a,dataln);

Highpass Chebyshev Type | Filter
Design a 9th-order highpass Chebyshev Type I filter with 0.5 dB of passband ripple and
a passband edge frequency of 300 Hz, which, for data sampled at 1000 Hz, corresponds to

0.6x rad/sample. Plot the magnitude and phase responses. Convert the zeros, poles, and
gain to second-order sections for use by fvtool.

cheby1

Magnitude (dB)

[z,p, k] = chebyl(9,0.5,300/500, 'high'");
sos = zp2sos(z,p,k);
fvtool (sos, 'Analysis', 'freqg'")

Magnitude Response (dB) and Phase Response

=50

100 F /..-"’f

-150

RN

=200

2501 |

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.
Mormalized Frequency (=7 rad/sample)

Bandpass Chebyshev Type | Filter

13.716

11.151

8.586

6.021

3.457

0.892

Phaze (radians)

Design a 20th-order Chebyshev Type I bandpass filter with a lower passband frequency
of 500 Hz and a higher passband frequency of 560 Hz. Specify a passband ripple of 3 dB
and a sample rate of 1500 Hz. Use the state-space representation. Design an identical

filter using designfilt.

1-159

1 Functions — Alphabetical List

[A,B,C,D] = chebyl(10,3,[500 560]/750);

d = designfilt ('bandpassiir','FilterOrder', 20,
'PassbandFrequencyl', 500, 'PassbandFrequency?2', 560,
'PassbandRipple', 3, 'SampleRate',1500) ;

Convert the state-space representation to second-order sections. Visualize the frequency
responses using fvtool.

sos = ss2sos(A,B,C,D);
fvt = fvtool (sos,d, 'Fs',1500);
legend (fvt, 'chebyl', 'designfilt"')

Magnitude Response (dB)
0r ™ i
|I |
50 F / I'. 4
-100 | / \ .
‘-_lll"
g 190 / :
=) z’j M,
‘?I_.; 200 ,-"f/ AN -
- ?.f..- Y
-5 .-"f/ 1“1
I= _ -~ i
=250 -
5 ~ \
= - \
-300 [v _—
f/-’ Ilu
350 | // cheby |
/ designfilt \
1
4001/ 1
/ |
450 / IL
0 100 200 300 400 500 600 700

Frequency (Hz)

1-160

cheby1

Comparison of Analog IIR Lowpass Filters

Design a 5th-order analog Butterworth lowpass filter with a cutoff frequency of 2 GHz.

Multiply by 27 {6 convert the frequency to radians per second. Compute the frequency
response of the filter at 4096 points.

n = 5;
f = 2e9;

[zb,pb, kb] = butter(n,2*pi*f,'s"');
[bb,ab] = zp2tf (zb,pb,kb);
[hb,wb] = fregs (bb,ab,4096);

Design a 5th-order Chebyshev Type I filter with the same edge frequency and 3 dB of
passband ripple. Compute its frequency response.

[z1,pl,k1] = chebyl(n,3,2*pi*f,'s');
[bl,al] = zp2tf(zl,pl,kl);
[hl,wl] fregs(bl,al, 4096);

Design a 5th-order Chebyshev Type II filter with the same edge frequency and 30 dB of
stopband attenuation. Compute its frequency response.

[z2,p2,k2] = cheby2(n,30,2*%pi*f, "'s");
[b2,a2] = zp2tf(z2,p2,k2);
[h2,w2] = fregs(b2,a2,4096);

Design a 5th-order elliptic filter with the same edge frequency, 3 dB of passband ripple,
and 30 dB of stopband attenuation. Compute its frequency response.

[ze,pe,ke] = ellip(n,3,30,2*pi*f, 's');
[be,ae] = zp2tf(ze,pe,ke);
[he,we] = fregs(be,ae,4096);

Plot the attenuation in decibels. Express the frequency in gigahertz. Compare the filters.

plot (wb/ (2e9*pi),mag2db (abs (hb)))
hold on

plot (wl/ (2e9*pi),mag2db (abs (hl)))
plot (w2/ (2e9*pi),mag2db (abs (h2)))
plot (we/ (2e9*pi),mag2db (abs (he)))
axis ([0 4 -40 5])

grid

xlabel ('Frequency (GHz)")

1-161

1 Functions — Alphabetical List

ylabel ('Attenuation (dB)")
legend ('butter', 'chebyl', 'cheby2', 'ellip"')

5 T T T T T T T
butter
cheby1| 7
cheby2
5 ellip _
—~-10F} 1
@
=2
§15] '
2 20 R 1
£ o
< \
25 | \ 1
.
a0 \\K f____
‘ |'I \ P
35 H >< y
—4'} i i i i i I|| i i
0 0.5 1 15 2 25 3 3.5 4

Frequency (GHz)

The Butterworth and Chebyshev Type II filters have flat passbands and wide transition
bands. The Chebyshev Type I and elliptic filters roll off faster but have passband ripple.
The frequency input to the Chebyshev Type II design function sets the beginning of the
stopband rather than the end of the passband.

1-162

cheby1

Input Arguments

n — Filter order
integer scalar
Filter order, specified as an integer scalar.

Data Types: double

Rp — Peak-to-peak passband ripple
positive scalar

Peak-to-peak passband ripple, specified as a positive scalar expressed in decibels.

If your specification, £, is in linear units, you can convert it to decibels using

Data Types: double

Wp — Passband edge frequency
scalar | two-element vector

Passband edge frequency, specified as a scalar or a two-element vector. The passband
edge frequency is the frequency at which the magnitude response of the filter is —
Rp decibels. Smaller values of passband ripple, Rp, result in wider transition bands.

+ If wp is a scalar, then chebyl designs a lowpass or highpass filter with edge
frequency Wp.

If wp is the two-element vector [wl w2], where wl < w2, then chebyl designs a
bandpass or bandstop filter with lower edge frequency w1 and higher edge frequency
w2.

+ For digital filters, the passband edge frequencies must lie between 0 and 1, where 1
corresponds to the Nyquist rate—half the sample rate or ir rad/sample.

For analog filters, the passband edge frequencies must be expressed in radians per
second and can take on any positive value.

Data Types: double

ftype — Filter type
'low' | 'bandpass' | 'high' | 'stop'

1-163

1 Functions — Alphabetical List

1-164

Filter type, specified as one of the following:

* 'low' specifies a lowpass filter with passband edge frequency Wp. 'low' is the
default for scalar Wp.

* 'high' specifies a highpass filter with passband edge frequency Wp.

* 'bandpass' specifies a bandpass filter of order 2n if Wp is a two-element vector.
'bandpass' is the default when Wp has two elements.

* 'stop' specifies a bandstop filter of order 2n if Wp is a two-element vector.

Data Types: char

Output Arguments

b, a — Transfer function coefficients
row vectors

Transfer function coefficients of the filter, returned as row vectors of length n + 1 for
lowpass and highpass filters and 2n + 1 for bandpass and bandstop filters.

* For digital filters, the transfer function is expressed in terms of b and a as

_B(® b(l)+b(2)z 4+ 4b(nt1)2 "

H(z)= =
Az) a(1)+a(2)zt

+-ta(n+1)z ?

* For analog filters, the transfer function is expressed in terms of b and a as
_B(s) _b(1)s"+b(2)s" +-4Db(n+1)

_A(s)_a(l)s”+a(2)s”‘1+---+a<n+1)'

H(s)

Data Types: double

z,p,k — Zeros, poles, and gain
column vectors, scalar

Zeros, poles, and gain of the filter, returned as two column vectors of length n (2n for
bandpass and bandstop designs) and a scalar.

* For digital filters, the transfer function is expressed in terms of z, p, and k as

cheby1

A-z(L)z Ha-z@2)zH-A=-zm)zhH

H(z)=% — —~ —.
Ql-p(l)z)A-p(2)z)--A-p(n)z)

+ For analog filters, the transfer function is expressed in terms of z, p, and k as
(s—z (1)(s=2z(2))--(s=z(n))

H(s) = .
) =k s (1) (s—p (2)(5—p (n)

Data Types: double

A,B,C,D — State-space matrices
matrices

State-space representation of the filter, returned as matrices. If m = n for lowpass and
highpass designs and m = 2n for bandpass and bandstop filters, then A is m X m, B is
mx1,Cislxm,andDis 1 X 1.

+ For digital filters, the state-space matrices relate the state vector x, the input u, and
the output y through
x(k+1) =2ax(k)+Bulk)
y(k) = Ccx(k)+Du(k).

+ For analog filters, the state-space matrices relate the state vector x, the input u, and
the output y through
X =AXx+Bu
y=Cx+Du.

Data Types: double

Definitions

Limitations
Numerical Instability of Transfer Function Syntax

In general, use the [z, p, k] syntax to design IIR filters. To analyze or implement your
filter, you can then use the [z, p, k] output with zp2sos. If you design the filter using
the [b, a] syntax, you might encounter numerical problems. These problems are due to

1-165

1 Functions — Alphabetical List

round-off errors and can occur for n as low as 4. The following example illustrates this
limitation.

n=6;

Rp = 0.1;
Wn = [2.5e6 29e6]/500e6;
ftype = 'bandpass';

% Transfer function design

[b,a] = chebyl (n,Rp,Wn, ftype); % This filter is unstable
% Zero-pole-gain design

[z,p,k] = chebyl (n,Rp,Wn, ftype) ;
sos = zp2sos(z,p,k);

% Plot and compare the results

hfvt = fvtool (b, a,sos, 'FrequencyScale', "log');
legend (hfvt, '"TF Design', 'ZPK Design')

1-166

cheby1

)

Magnitude (d

Magnitude Response (dB)
0r |
Hhﬂp_ \E
/ m. RQ&
50 F ;:, u o ﬁ;% i
, i N\
s | SN
-100 7 S i
//z. s I|II ‘-\\
S ' TF Design
-150 AN A ZPK Design Vi
r \ : \ W
y (|
& 1| "_'.
=200 o i N
Illll I',I'I.
-250 | H
-300 - 1 ———— ———— 1
10°3 1072 1077
Mormalized Frequency (=« rad/sample)
Algorithms

Chebyshev Type I filters are equiripple in the passband and monotonic in the stopband.

Type I filters roll off faster than Type II filters, but at the expense of greater deviation
from unity in the passband.

chebyl uses a five-step algorithm:

1

It finds the lowpass analog prototype poles, zeros, and gain using the function
cheblap.

1-167

1 Functions — Alphabetical List

2 It converts the poles, zeros, and gain into state-space form.

3 If required, it uses a state-space transformation to convert the lowpass filter to a
highpass, bandpass, or bandstop filter with the desired frequency constraints.

4 For digital filter design, it uses bilinear to convert the analog filter into a digital
filter through a bilinear transformation with frequency prewarping. Careful
frequency adjustment enables the analog filters and the digital filters to have the
same frequency response magnitude at Wp or wl and w2.

5 It converts the state-space filter back to transfer function or zero-pole-gain form, as
required.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™,

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not
change.

See Also
besself | butter | cheblap | cheblord | cheby2 | designfilt | ellip | filter
| sosfilt

Introduced before R2006a

1-168

cheby?2

cheby?2

Chebyshev Type II filter design

Syntax

[b,a]l = cheby2(n,Rs,Ws)
cheby?2 (n,Rs, Ws, ftype)

o
©
Il

[z,p,k] = cheby2()

[A,B,C,D] = cheby2(_)
[] =cheby2(_ _ ,'s")

Description

[b,a] = cheby2 (n,Rs,Ws) returns the transfer function coefficients of an nth-order

lowpass digital Chebyshev Type II filter with normalized stopband edge frequency Ws
and Rs decibels of stopband attenuation down from the peak passband value.

[b,a] = cheby2(n,Rs,Ws, ftype) designs a lowpass, highpass, bandpass, or
bandstop Chebyshev Type II filter, depending on the value of ftype and the number of
elements of Ws. The resulting bandpass and bandstop designs are of order 2n.

Note: See “Limitations” on page 1-179 for information about numerical issues that
affect forming the transfer function.

[z,p, k] = cheby2() designs a lowpass, highpass, bandpass, or bandstop digital

Chebyshev Type II filter and returns its zeros, poles, and gain. This syntax can include
any of the input arguments in previous syntaxes.

[A,B,C,D] = cheby2() designs a lowpass, highpass, bandpass, or bandstop

digital Chebyshev Type II filter and returns the matrices that specify its state-space
representation.

1-169

1 Functions — Alphabetical List

1-170

[] = cheby2(, 's') designs a lowpass, highpass, bandpass, or bandstop

analog Chebyshev Type II filter with stopband edge angular frequency Ws and Rs
decibels of stopband attenuation.

Examples

Lowpass Chebyshev Type Il Transfer Function

Design a 6th-order lowpass Chebyshev Type II filter with 40 dB of stopband attenuation
and a stopband edge frequency of 300 Hz, which, for data sampled at 1000 Hz,

corresponds to 0.6x rad/sample. Plot its magnitude and phase responses. Use it to filter
a 1000-sample random signal.

[b,a] = cheby2(6,40,0.06);
freqgz (b, a)

cheby?2

D T T T T = T T T T T
T 20r 1
5
E A0 Irl_.-n- l(/ﬂ_ﬂ_m_.._ f____Fd_-
5 III \ /
= -60 (u'
—BD i i i i i i i i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Mormalized Frequency (= rad/sample)
EDD T T T T T T T T T
w
5 00— J]
D —
= T T —
@ 200 \ R
=
o .
—4':“} i i i i i i i i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Mormalized Frequency (= rad/sample)
dataIn = randn(1000,1);
dataOut = filter(b,a,dataln);

Bandstop Chebyshev Type Il Filter

Design a 6th-order Chebyshev Type II bandstop filter with normalized edge frequencies

of V.27 gpnq U.0m rad/sample and 50 dB of stopband attenuation. Plot its magnitude and

phase responses. Use it to filter random data.

[b,a] = cheby2(3,50,[0.2 0.6], '"'stop');
freqz (b, a)

1-171

Functions — Alphabetical List

Magnitude (dB)

Fhase (degrees)

1-172

D T T T T T T T /I,ﬂ-’!
.-""--'...
-50 —_— - / .
4 -)
; / /
| | |
_1 DD i i i ’ i i i i i i
0 0.1 02 03 04 05 06 07 08 09 1
Mormalized Frequency (= rad/sample)
4':”} T T T T T T T T T
200 J'_ T .
0 |_
\]
-200 “--_____J .
_‘4 DD i i i i i i i i i

0 01 02 03 04 05 06 07 08 09 1
Mormalized Frequency (= rad/sample)

dataIn = randn(1000,1);
dataOut = filter(b,a,dataln);

Highpass Chebyshev Type Il Filter

Design a 9th-order highpass Chebyshev Type II filter with 20 dB of stopband attenuation
and a stopband edge frequency of 300 Hz, which, for data sampled at 1000 Hz,

corresponds to 0.6x rad/sample. Plot the magnitude and phase responses. Convert the
zeros, poles, and gain to second-order sections for use by fvtool.

cheby?2

Magnitude (dB)

[z,p, k] = cheby2(9,20,300/500, "high'");

sos = zp2sos(z,p,k);
fvtool (sos, 'Analysis', 'freqg'")

Magnitude Response (dB) and Phase Response

\
or | (5.153
10k i 1 4.463
| |
20k — /,__,ﬂ\ ~ b [" I'. 1 3.773
Ill II —
30+ \'I, / \ ‘L/ \i oy 1 3.083 E
| 1 \ =
40 ',m ' H‘-.._k 12393 &
'\x\ "I'.' LY [1]
_ED- '\-\. I".II \\\\ 1 1.704 _LE:E
AN N\ \ . *
60 F \\ \ g 1 1.014
. 1\\\ |
20t - \ 1 0.324
\ '-,_\I 1
a0k - 1-0.366
\\
a0 F | | | | { i i [[1 -1.056

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mormalized Frequency (=7 rad/sample)

Bandpass Chebyshev Type Il Filter

Design a 20th-order Chebyshev Type II bandpass filter with a lower stopband frequency
of 500 Hz and a higher stopband frequency of 560 Hz. Specify a stopband attenuation of
40 dB and a sample rate of 1500 Hz. Use the state-space representation. Design an
identical filter using designfilt.

1-173

1 Functions — Alphabetical List

[A,B,C,D] = cheby2 (10,40, [500 560]/750);

d = designfilt ('bandpassiir','FilterOrder', 20,
'StopbandFrequencyl', 500, 'StopbandFrequency?2', 560,
'StopbandAttenuation', 40, 'SampleRate',1500) ;

Convert the state-space representation to second-order sections. Visualize the frequency
responses using fvtool.

sos = ss2sos(A,B,C,D);
fvt = fvtool(sos,d, 'Fs',1500);
legend (fvt, 'cheby2', 'designfilt"')

Magnitude Response (dB)
Or cheby2 |'_| T
desigrifilt
-10 7
20T 7
)
A2
@ =30 7
g=!
=
5
':E“ =L — D 2N I."-'l il |'1'| ™y -
T lII| | | | | f \'. /
\\\ / I| | || I|I
-50 x‘*., || |
- Y
|II II| | | [
250 = | ” -
[|
(] ||
-TOE 1 1 1 H 1 1 1 -
0 100 200 300 400 500 600 00

Frequency (Hz)

1-174

cheby2

Comparison of Analog IIR Lowpass Filters

Design a 5th-order analog Butterworth lowpass filter with a cutoff frequency of 2 GHz.

Multiply by 27 {6 convert the frequency to radians per second. Compute the frequency
response of the filter at 4096 points.

n = 5;
f = 2e9;

[zb,pb, kb] = butter(n,2*pi*f,'s"');
[bb,ab] = zp2tf (zb,pb,kb);
[hb,wb] = fregs (bb,ab,4096);

Design a 5th-order Chebyshev Type I filter with the same edge frequency and 3 dB of
passband ripple. Compute its frequency response.

[z1,pl,k1] = chebyl(n,3,2*pi*f,'s');
[bl,al] = zp2tf(zl,pl,kl);
[hl,wl] fregs(bl,al, 4096);

Design a 5th-order Chebyshev Type II filter with the same edge frequency and 30 dB of
stopband attenuation. Compute its frequency response.

[z2,p2,k2] = cheby2(n,30,2*%pi*f, "'s");
[b2,a2] = zp2tf(z2,p2,k2);
[h2,w2] = fregs(b2,a2,4096);

Design a 5th-order elliptic filter with the same edge frequency, 3 dB of passband ripple,
and 30 dB of stopband attenuation. Compute its frequency response.

[ze,pe,ke] = ellip(n,3,30,2*pi*f, 's');
[be,ae] = zp2tf(ze,pe,ke);
[he,we] = fregs(be,ae,4096);

Plot the attenuation in decibels. Express the frequency in gigahertz. Compare the filters.

plot (wb/ (2e9*pi),mag2db (abs (hb)))
hold on

plot (wl/ (2e9*pi),mag2db (abs (hl)))
plot (w2/ (2e9*pi),mag2db (abs (h2)))
plot (we/ (2e9*pi),mag2db (abs (he)))
axis ([0 4 -40 5])

grid

xlabel ('Frequency (GHz)")

1-175

1 Functions — Alphabetical List

ylabel ('Attenuation (dB)")
legend ('butter', 'chebyl', 'cheby2', 'ellip"')

5 T T T T T T T
butter
cheby1| 7
cheby2
5 ellip _
—~-10F} 1
@
=2
§15] '
2 20 R 1
£ o
< \
25 | \ 1
.
a0 \\K f____
‘ |'I \ P
35 H >< y
—4'} i i i i i I|| i i
0 0.5 1 15 2 25 3 3.5 4

Frequency (GHz)

The Butterworth and Chebyshev Type II filters have flat passbands and wide transition
bands. The Chebyshev Type I and elliptic filters roll off faster but have passband ripple.
The frequency input to the Chebyshev Type II design function sets the beginning of the
stopband rather than the end of the passband.

1-176

cheby?2

Input Arguments

n — Filter order

integer scalar

Filter order, specified as an integer scalar.
Data Types: double

Rs — Stopband attenuation
positive scalar

Stopband attenuation down from the peak passband value, specified as a positive scalar
expressed in decibels.

If your specification, £, is in linear units, you can convert it to decibels using Rs = —
20 log4t.
Data Types: double

Ws — Stopband edge frequency
scalar | two-element vector

Stopband edge frequency, specified as a scalar or a two-element vector. The stopband
edge frequency is the frequency at which the magnitude response of the filter is —
Rs decibels. Larger values of stopband attenuation, Rs, result in wider transition bands.

+ Ifws is a scalar, then cheby?2 designs a lowpass or highpass filter with edge
frequency Ws.

If Ws is the two-element vector [wl w2], where wl < w2, then cheby?2 designs a
bandpass or bandstop filter with lower edge frequency w1 and higher edge frequency
w2.

* For digital filters, the stopband edge frequencies must lie between 0 and 1, where 1
corresponds to the Nyquist rate—half the sample rate or ir rad/sample.

For analog filters, the stopband edge frequencies must be expressed in radians per
second and can take on any positive value.

Data Types: double

1-177

1 Functions — Alphabetical List

1-178

ftype — Filter type
'low' | 'bandpass' | 'high' | '"stop'

Filter type, specified as one of the following:
+ 'low' specifies a lowpass filter with stopband edge frequency Ws. 'low' is the
default for scalar Ws.

* 'high' specifies a highpass filter with stopband edge frequency Ws.

* 'bandpass' specifies a bandpass filter of order 2n if Ws is a two-element vector.
'bandpass"' is the default when Ws has two elements.

* 'stop' specifies a bandstop filter of order 2n if Ws 1s a two-element vector.

Data Types: char

Output Arguments

b, a — Transfer function coefficients
row vectors

Transfer function coefficients of the filter, returned as row vectors of length n + 1 for
lowpass and highpass filters and 2n + 1 for bandpass and bandstop filters.

* For digital filters, the transfer function is expressed in terms of b and a as

B(z) b(1)+b(2)z 4+ 4b(n+1)z™"

H(z) = _
A2 a(1)+a(2)zt

+--+a(n+l)z "

+ For analog filters, the transfer function is expressed in terms of b and a as
_B(s) _b(1)s"+b(2)s" T4 tDb(n+1)

_A(s)_a(1>s”+a(2)s”‘1+---+a<n+1)'

H(s)

Data Types: double

z,p,k — Zeros, poles, and gain
column vectors, scalar

Zeros, poles, and gain of the filter, returned as two column vectors of length n (2n for
bandpass and bandstop designs) and a scalar.

cheby?2

* For digital filters, the transfer function is expressed in terms of z, p, and k as
(1-z L)z hHa-z@2)zHA-z)z

H(z)=% — —~ —.
Ql-p(1)z HA-p((2)z)--A-p(n)z)

+ For analog filters, the transfer function is expressed in terms of z, p, and k as
(s—z (1)(s=2z(2))--(s=z(n))

H(s) = .
) =k s (1) (s—p (2)(5—p (n)

Data Types: double

A,B,C,D — State-space matrices
matrices

State-space representation of the filter, returned as matrices. If m = n for lowpass and
highpass designs and m = 2n for bandpass and bandstop filters, then A is m X m, B is
mx1,Cislxm,andDis 1 X 1.

+ For digital filters, the state-space matrices relate the state vector x, the input u, and
the output y through
x(k+1) =2ax(k)+Bulk)
y(k) = Ccx(k)+Du(k).

+ For analog filters, the state-space matrices relate the state vector x, the input u, and
the output y through
X =AX+Bu
y=Cx+Du.

Data Types: double

Definitions

Limitations
Numerical Instability of Transfer Function Syntax

In general, use the [z, p, k] syntax to design IIR filters. To analyze or implement your
filter, you can then use the [z, p, k] output with zp2sos. If you design the filter using

1-179

1 Functions — Alphabetical List

the [b, a] syntax, you might encounter numerical problems. These problems are due to
round-off errors and can occur for n as low as 4. The following example illustrates this

limitation.

n=6;

Rs = 80;

Wn = [2.5e6 29e6]/500e6;
ftype = 'bandpass';

¢ Transfer function design

[b,a] = cheby2(n,Rs,Wn, ftype); % This filter is unstable
% Zero-pole-gain design

[z,p,k] = cheby2(n,Rs,Wn, ftype);
sos = zp2sos(z,p,k);

s Plot and compare the results
hfvt = fvtool (b, a,sos, 'FrequencyScale', "log');
legend (hfvt, 'TF Design', 'ZPK Design')

1-180

cheby?2

Magnitude (dB)

Magnitude Response (dB)

TF Design | 7
ZPK Design

-30 |] .

-50

1) e

-for

80 J |H{ ﬂ | \ | u{ x f: T
|
|

400 .J.L

10°3 1072 1077
Mormalized Frequency (=« rad/sample)

Algorithms

Chebyshev Type II filters are monotonic in the passband and equiripple in the stopband.
Type II filters do not roll off as fast as Type I filters, but are free of passband ripple.

cheby?2 uses a five-step algorithm:

1 It finds the lowpass analog prototype poles, zeros, and gain using the function
cheb2ap.

2 It converts poles, zeros, and gain into state-space form.

1-181

1 Functions — Alphabetical List

3 Ifrequired, it uses a state-space transformation to convert the lowpass filter into a
bandpass, highpass, or bandstop filter with the desired frequency constraints.

4 For digital filter design, it uses bilinear to convert the analog filter into a digital
filter through a bilinear transformation with frequency prewarping. Careful
frequency adjustment the analog filters and the digital filters to have the same
frequency response magnitude at Ws or wl and w2.

5 It converts the state-space filter back to transfer function or zero-pole-gain form, as
required.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™,

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not
change.

See Also
besself | butter | cheblord | cheb2ap | chebyl | designfilt | ellip | filter
| sosfilt

Introduced before R2006a

1-182

chirp

chirp

Swept-frequency cosine

Syntax

y = chirp(t, £0,tl, f1)

y = chirp(t, £0,tl, fl, 'method")

y = chirp(t,£0,tl, fl, 'method’',phi)

y = chirp(t, £0,tl, fl, '"quadratic', phi, 'shape')
Description

y = chirp(t, £0,t1, £1) generates samples of a linear swept-frequency cosine signal
at the time instances defined in array t, where £0 is the instantaneous frequency at
time 0, and £1 is the instantaneous frequency at time t1. £0 and £1 are both in hertz. If
unspecified, £0 is e® for logarithmic chirp and O for all other methods, t1 is 1, and f1

is 100.

y = chirp(t, f0,tl, f1, 'method’) specifies alternative sweep method options,
where method can be:

* linear, which specifies an instantaneous frequency sweep fi(f)given by

;@) =fo+ Bt

where

B=(fi-1fy)/t

and the default value for f; is 0. B ensures that the desired frequency breakpoint f; at
time ¢; is maintained.

* quadratic, which specifies an instantaneous frequency sweep f;(f) given by

f:t) = fo + Bt?

where

1-183

1 Functions — Alphabetical List

1-184

B=(f1-f)!t>

and the default value for f; is 0. If f, > f; (downsweep), the default shape is convex. If
fo<f1 (upsweep), the default shape is concave.

* logarithmic specifies an instantaneous frequency sweep f;(t) given by

@) =fyxp’

where

1
p=(1]
fo
and the default value for f; is 1e*. Both an upsweep (f; > f,) and a downsweep (f, > f1)
of frequency is possible.

Each of the above methods can be entered as '1i', 'q', and '1lo"', respectively.

y = chirp(t, £0,tl, f1l, 'method’,phi) allows an initial phase phi to be specified in
degrees. If unspecified, phi is 0. Default values are substituted for empty or omitted
trailing input arguments.

y = chirp(t, £0,tl, f1l, '"quadratic',phi, 'shape’') specifies the shape of the
quadratic swept-frequency signal's spectrogram. shape is either concave or convex,
which describes the shape of the parabola in the positive frequency axis. If shape is
omitted, the default is convex for downsweep (f, > f;) and is concave for upsweep (f, < f1).

Convex downsweep shape Concave upsweep shape

chirp

Examples

Linear Chirp

Generate a chirp with linear instantaneous frequency deviation. The chirp is sampled at
1 kHz for 2 seconds. The instantaneous frequency is 0 at t = 0 and crosses 250 Hz at t =1
second.

t
Yy

0:1/1e3:2;
chirp(t,0,1,250);

Compute and plot the spectrogram of the chirp. Specify 256 DFT points, a Hamming
window of the same length, and 250 samples of overlap.

spectrogram(y, 256,250,256, 1e3, 'yaxis")

1-185

1 Functions — Alphabetical List

500

450

B8
o o

Frequency (Hz)
8
=

Fowerfrequency (dB/Hz}

150

100

0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8
Time (secs)

Quadratic Chirp

Generate a chirp with quadratic instantaneous frequency deviation. The chirp is sampled
at 1 kHz for 2 seconds. The instantaneous frequency is 100 Hz at t = 0 and crosses 200
Hz at t = 1 second.

t = 0:1/1e3:2;
y chirp(t,100,1,200, "quadratic');

Compute and plot the spectrogram of the chirp. Specify 128 DFT points, a Hamming
window of the same length, and 120 samples of overlap.

1-186

chirp

Frequency (Hz)

500

450

=]
=1

[~
n
=

=
=}

150

spectrogram(y, 128,120,128, 1e3, "yaxis"')

Powerfrequency (dB/Hz)}

02 04 06 08 1 12 14 186 18
Time (secs)

Convex Quadratic Chirp

Generate a convex quadratic chirp sampled at 1 kHz for 2 seconds. The instantaneous
frequency is 400 Hz at t = 0 and crosses 300 Hz at t = 1 second.

t = 0:1/1e3:2;

fo = 400;

f1 = 300;

y = chirp(t,fo,1,fl, "quadratic', [], 'convex');

1-187

1 Functions — Alphabetical List

Compute and plot the spectrogram of the chirp. Specify 256 DFT points, a Hamming
window of the same length, and 200 samples of overlap.

spectrogram(y,256,200,256,1e3, 'yaxis")

500
450 -20
-30
400
-40
350 3
T 300)
= 60 7
{
S 250
4 70 %
4 =
£ 200 80 2
150 -an -
100 -100
50 -110
120

02 04 06 08 1 1.2 1.4 16 1.8
Time (secs)

Symmetric Concave Quadratic Chirp

Generate a concave quadratic chirp sampled at 1 kHz for 4 seconds. Specify the time
vector so that the instantaneous frequency is symmetric about the halfway point of the

sampling interval, with a minimum frequency of 100 Hz and a maximum frequency of
500 Hz.

1-188

chirp

Frequency (Hz)

500 T

450

]
(=)

[5]
n
=

=]
=

[
=4
=

=
=}

150

t = -2:1/1e3:2;

fo = 100;

f1 = 200;

y = chirp(t,fo,1,£fl, "quadratic', [], "concave');

Compute and plot the spectrogram of the chirp. Specify 128 DFT points, a Hann window
of the same length, and 120 samples of overlap. Note that the spectrogram function
measures time starting at t = 0;

spectrogram(y,hann(128),120,128,1e3, 'yaxis"')

=20
i)
I
o
=
iy
cC
g
=
o
=
]
5
(1N
0.5 1 15 2 25 3 35
Time (secs)

1-189

1 Functions — Alphabetical List

Logarithmic Chirp

Generate a logarithmic chirp sampled at 1 kHz for 10 seconds. The instantaneous
frequency is 10 Hz initially and 400 Hz at the end.

t = 0:1/1e3:10;

fo = 10;

f1 = 400;

y = chirp(t,fo,10,fl, "logarithmic');

Compute and plot the spectrogram of the chirp. Specify 256 DFT points, a Hamming
window of the same length, and 200 samples of overlap.

spectrogram(y, 256,200,256,1e3, "yaxis')

500

450

B8
o o

Frequency (Hz)
B
=

Fowerfrequency (dB/Hz}

150

1 2 3 4 5 6 T 8 9
Time (secs)

1-190

chirp

See Also

cos | diric | gauspuls | pulstran | rectpuls | sawtooth | sin | sinc | square
| tripuls

Introduced before R2006a

1-191

1 Functions — Alphabetical List

1-192

convmitx

Convolution matrix

Syntax

A = convmtx (h,n)

Description

A = convmtx (h,n) returns the convolution matrix, A, such that the product of 2 and a
vector, x, is the convolution of h and x.

+ Ifhis a column vector of length m, A is (m+n-1) -by-n and the product of A and a
column vector, x, of length n is the convolution of h and x.

+ Ifhis a row vector of length m, A is n-by- (m+n-1) and the product of a row vector, x,
of length n with 2 is the convolution of h and x.

convmtx handles edge conditions by zero padding.

Examples

Efficient Computation of Convolution

It is generally more efficient to compute a convolution using conv when the signals are
vectors. For multichannel signals, convmtx might be more efficient.

Compute the convolution of two random vectors, a and b, using both conv and convmtx.
The signals have 1000 samples each. Compare the time spent by the two functions.
Eliminate random fluctuations by repeating the calculation 30 times and averaging.

Nt = 30;
Na = 1000;
Nb = 1000;

convmtx

tecnv = 0;
tmtx = 0;

for kj = 1:Nt

tic
n = conv(a,b);
tcnv = tcnv+toc;

tic

c = convmtx (b,Na) ;

d = c*a;

tmtx = tmtx+toc;
end
tlcol = [tcnv tmtx] /Nt
tlcol =

0.0009 0.0326

tlrat = tcnv\tmtx

tlrat = 37.2280

conv is about two orders of magnitude more efficient.

Repeat the exercise for the case where a is a mutichannel signal with 1000 channels.

Optimize conv's performance by preallocating.

Nchan = 1000;

tcnv =
tmtx

o O
~.

~.

n = zeros (Na+Nb-1,Nchan) ;

for kj = 1:Nt
a = randn (Na,Nchan) ;
b randn (Nb, 1) ;

1-193

1 Functions — Alphabetical List

1-194

tic
for k = 1:Nchan

n(:,k) = conv(a(:,k),b);
end

tcnv = tcnv+toc;

tic

c = convmtx (b,Na) ;

d = c*a;

tmtx = tmtx+toc;
end
tmcol = [tcnv tmtx] /Nt
tmcol =

0.6389 0.1421
tmrat = tcnv/tmtx
tmrat = 4.4959

convmtx 1s about 3 times as efficient as conv.

Algorithms

convmtx uses the function toeplitz to generate the convolution matrix.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

conv | conv2 | convn | corrmtx | dftmtx

convmtx

Introduced before R2006a

1-195

1 Functions — Alphabetical List

corrmtx

Data matrix for autocorrelation matrix estimation

Syntax

X corrmtx (x,m)
X = corrmtx(x,m, 'method’)
[X,R] = corrmtx(...)

Description

X = corrmtx (x,m) returns an (n + m)-by-(m + 1) rectangular Toeplitz matrix X, such
that x'X is a (biased) estimate of the autocorrelation matrix for the length-n data vector
x. m must be a positive integer strictly smaller than the length of the input x.

X = corrmtx(x,m, 'method') computes the matrix X according to the method specified
by 'method’:

* 'autocorrelation': (default) X is the (n + m)-by-(m + 1) rectangular Toeplitz matrix
that generates an autocorrelation estimate for the length-n data vector x, derived
using prewindowed and postwindowed data, based on an mth-order prediction error
model.

* 'prewindowed': X is the n-by-(m + 1) rectangular Toeplitz matrix that generates an
autocorrelation estimate for the length-n data vector x, derived using prewindowed
data, based on an mth-order prediction error model.

* 'postwindowed': X is the n-by-(m + 1) rectangular Toeplitz matrix that generates an
autocorrelation estimate for the length-n data vector x, derived using postwindowed
data, based on an mth-order prediction error model.

* 'covariance': X is the (n —m)-by-(m + 1) rectangular Toeplitz matrix that generates
an autocorrelation estimate for the length-n data vector x, derived using
nonwindowed data, based on an mth-order prediction error model.

* 'modified':Xis the 2(n —m)-by-(m + 1) modified rectangular Toeplitz matrix that
generates an autocorrelation estimate for the length-n data vector x, derived using

1-196

corrmtx

forward and backward prediction error estimates, based on an mth-order prediction
error model.

[X,R] = corrmtx(...) alsoreturns the (m+ 1)-by-(m + 1) autocorrelation matrix
estimate R, calculated as X' *X.

Examples

Modified Data and Autocorrelation Matrices

Generate a signal composed of three complex exponentials embedded in white Gaussian
noise. Compute the data and autocorrelation matrices using the 'modified' method.

n = 0:99;

s exp (i*pi/2*n)+2*exp (i*pi/4*n)+exp (i*pi/3*n)+randn(1,100);
m = 12;

[X,R] = corrmtx(s,m, 'modified");

Plot the real and imaginary parts of the autocorrelation matrix.

[A,B] = ndgrid(l:m+1);
subplot(2,1,1)
plot3(A,B,real (R))
title('Re(R) ")

subplot (2,1, 2)
plot3(A,B,imag (R))
title('Im(R) ")

1-197

1 Functions — Alphabetical List

Algorithms

The Toeplitz data matrix computed by corrmtx depends on the method you select. The

matrix determined by the autocorrelation (default) method is given by the following
matrix.

1-198

corrmtx

x(1) 0
x(m: +1) x(zl)
X=|x(n .—m) x(m:+ D
x(n) x(n—m)
o)

In this matrix, m is the same as the input argument m to corrmtx, and n is length (x).
Variations of this matrix are used to return the output X of corrmtx for each method:

'autocorrelation' — (default) X = X, above.

'prewindowed' — X is the n-by-(m + 1) submatrix of X whose first row is [x(1) ... 0]

and whose last row is [x(n) ... x(n — m)].

'postwindowed' — X is the n-by-(m + 1) submatrix of X whose first row is
[x(m + 1) ... x(1)] and whose last row is [0 ... x(n)]

'covariance' — X is the (n — m)-by-(m + 1) submatrix of X whose first row is
[x(m + 1) ... x(1)] and whose last row is [x(n) ... x(n — m)].

'modified' — X is the 2(n — m)-by-(m + 1) matrix X,,,q4 shown below.
[x(m+1) - x(1)

xn-m) - x(m+1)

x(n—-m)

Xmod = x“(m+1)

x"(m+1) x(n-m)
|x"(n-m) - x'(n)

1-199

1 Functions — Alphabetical List

References

[1] Marple, S. Lawrence. Digital Spectral Analysis. Englewood Cliffs, NdJ: Prentice-Hall,
1987.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

peig | pmusic | rooteig | rootmusic | xcorr

Introduced before R2006a

1-200

cpsd

cpsd

Cross power spectral density

Syntax

pxy = cpsd(x,Vy)

pxy = cpsd(x,y,window)
pPxy cpsd (x,y,window, noverlap)
pxy = cpsd(x,y,window,noverlap,nfft)

pxy = cpsd(, 'mimo")

[pxy,w] = cpsd()

[pxy,f] = cpsd(___ ,fs)

[pxy,w] = cpsd(x,y,window,noverlap,w)
[pxy,f] = cpsd(x,y,window,noverlap, f, £s)
[1 = cpsd(x,y, ___ ,fregrange)
cpsd(_)

Description

pxy = cpsd(x,y) estimates the cross power spectral density (CPSD) of two discrete-
time signals, x and y, using Welch’s averaged, modified periodogram method of spectral
estimation.

+ If x and y are both vectors, they must have the same length.

+ If one of the signals is a matrix and the other is a vector, then the length of the vector
must equal the number of rows in the matrix. The function expands the vector and
returns a matrix of column-by-column cross power spectral density estimates.

+ If x and y are matrices with the same number of rows but different numbers of
columns, then cpsd returns a three-dimensional array, pxy, containing cross power

1-201

1 Functions — Alphabetical List

1-202

spectral density estimates for all combinations of input columns. Each column of pxy
corresponds to a column of x, and each page corresponds to a column of y:
pxy(:,m,n) = cpsd(x(:,m),y(:,n)).

+ If x and vy are matrices of equal size, then cpsd operates column-wise: pxy (:,n) =
cpsd(x(:,n),y(:,n)).Toobtain a multi-input/multi-output array, append 'mimo’
to the argument list.

For real x and y, cpsd returns a one-sided CPSD. For complex x or y, cpsd returns a
two-sided CPSD.

pxy = cpsd(x,y,window) uses window to divide x and y into segments and perform
windowing.

pxy = cpsd(x,y,window,noverlap) uses noverlap samples of overlap between
adjoining segments.

pxy = cpsd(x,y,window,noverlap,nfft) uses nfft sampling points to calculate
the discrete Fourier transform.

pxy = cpsd(, 'mimo') computes a multi-input/multi-output array of cross power

spectral density estimates. This syntax can include any combination of input arguments
from previous syntaxes.

[pxy,w] = cpsd() returns a vector of normalized frequencies, w, at which the

cross power spectral density is estimated.

[pxy, £] = cpsd(, £5) returns a vector of frequencies, £, expressed in terms of the
sample rate, £s, at which the cross power spectral density is estimated. fs must be the
sixth numeric input to cpsd. To input a sample rate and still use the default values of

the preceding optional arguments, specify these arguments as empty, [].

[pxy,w] = cpsd(x,y,window,noverlap,w) returns the cross power spectral density
estimates at the normalized frequencies specified in w.

[pxy, f] = cpsd(x,y,window,noverlap, £, f£s) returns the cross power spectral
density estimates at the frequencies specified in f.

[] = cpsd(x,v, , fregrange) returns the cross power spectral density
estimate over the frequency range specified by fregrange. Valid options for freqrange
are 'onesided', 'twosided', and 'centered’.

cpsd

cpsd () with no output arguments plots the cross power spectral density estimate in

the current figure window.

Examples

Cross Power Spectral Density of Colored Noise Signals

Generate two colored noise signals and plot their cross power spectral density. Specify a
length-1024 FFT and a 500-point triangular window with no overlap.

r = randn(16384,1);

hx = firl1(30,0.2,rectwin(31));
x = filter (hx,1,r);

hy = ones(1,10)/sqrt(10);
y = filter(hy,1,r);

cpsd(x,y,triang(500),250,1024)

1-203

1 Functions — Alphabetical List

Welch Cross Power Spectral Density Estimate
1D T T T T T T T T T

R SN
] - -
e
,ﬂfj
=
2
T
_Ff"';
T

\

Fowerffrequency (dBfrad/sample)

—

L
=]
T
—
e

i

o

-
T
I

——4_—_
——|=
. —
_:—~"‘

—"ED i i i i i i i i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mormalized Frequency (= rad/sample)

SISO and MIMO Cross Power Spectral Densities

Generate two two-channel sinusoids sampled at 1 kHz for 1 second. The channels of the
first signal have frequencies of 200 Hz and 300 Hz. The channels of the second signal
have frequencies of 300 Hz and 400 Hz. Both signals are embedded in unit-variance
white Gaussian noise.

fs = 1le3;
t = (0:1/fs:1-1/fs)"';

g = 2*sin(2*pi*[200 300].*t);

1-204

cpsd

Fowerffrequency (dB/Hz)

q gtrandn (size(q));

r = 2*sin (2*pi*[300 400].*t);
r r+randn (size(xr));

Compute the cross power spectral density of the two signals. Use a 256-sample Bartlett
window to divide the signals into segments and window the segments. Specify 128
samples of overlap between adjoining segments and 2048 DFT points. Use the built-in
functionality of cpsd to plot the result.

cpsd (g, r,bartlett (256),128,2048, fs)

Welch Cross Power Spectral Density Estimate

-15 T

—E'D i i i i i i i i i
0 50 100 150 200 250 300 350 400 450 500

Frequency (Hz)

By default, cpsd works column-by-column on matrix inputs of the same size. Each
channel peaks at the frequencies of the original sinusoids.

1-205

1 Functions — Alphabetical List

Repeat the calculation, but now append 'mimo"' to the list of arguments.

cpsd (g, r,bartlett (256),128,2048, fs, 'mimo")

Welch Cross Power Spectral Density Estimate

0 T

Fowerffrequency (dB/Hz)
R
n

it ff i

—E'D i i i i i i i i i
0 50 100 150 200 250 300 350 400 450 500

Frequency (Hz)

When called with the '"mimo' option, cpsd returns a three-dimensional array containing
cross power spectral density estimates for all combinations of input columns. The
estimate of the second channel of g and the first channel of r shows an enhanced peak at
the common frequency of 300 Hz.

1-206

cpsd

Cross Spectrum Phase of Lagged Sinusoids

Generate two 100 Hz sinusoidal signals sampled at 1 kHz for 296 ms. One of the
sinusoids lags the other by 2.5 ms, equivalent to a phase lag of /2. Both signals are
embedded in white Gaussian noise of variance 1/42.

Fs = 1000;
t = 0:1/Fs:0.296;

X = cos (2*pi*t*100)+0.25*randn (size(t));
tau = 1/400;
y = cos (2*pi*100* (t-tau))+0.25*randn (size(t));

Compute and plot the magnitude of the cross power spectral density. Use the default

settings for cpsd. The magnitude peaks at the frequency where there is significant
coherence between the signals.

cpsd(x,y, [1,[1,[]1,Fs)

1-207

1 Functions — Alphabetical List

Welch Cross Power Spectral Density Estimate

i i i
L da da fa
= n = o
T T T T
1

Fowerffrequency (dB/Hz)

IS
o
—

|
l [

|f\/ﬂ\‘ & ,-“'/ Vo Irr J]
P VAN,

| \

i
tn
=

i

n

on
T

50 100 150 200 250 300 350 400 450 500
Frequency (Hz)

&
]
(=

Plot magnitude-squared coherence function and the phase of the cross spectrum. The
ordinate at the high-coherence frequency corresponds to the phase lag between the

sinusoids.
[Cxy,F] = mscohere(x,y,[],[],[],Fs);
[Pxy,F] = cpsd(x,y,[1,[]1,[]1,Fs);

subplot(2,1,1)
plot (F,Cxy)
title ('Magnitude-Squared Coherence')

subplot(2,1,2)
plot (F,angle (Pxy))

1-208

cpsd

0

hold on
plot (F,2*pi*100*tau*ones (size(F)),

hold off

l__l)

xlabel ('Hz")
ylabel ('\Theta (f) ")
title('Cross Spectrum Phase')

Magnitude-Squared Coherence

° |

|

|

|

|
0 - m.\/\/AW \K' WAYSS
0 100 150 350 400 450 500
. Cross Spectrum Phase
2r ‘ r————-q r“1 ' l # {h i
o / | | ‘ | | 1
12 H LJ lJ P// “ fy’“\J h_)f ‘ i
40 E.ID 1EIrD 15er ztlru 25IEI' E.I:IrD 3LI=.D 4|:IHJ 4LI=.D 500

Hz

1-209

1 Functions — Alphabetical List

1-210

Cross Power Spectral Density of Exponential Sequences

Generate two N-sample exponential sequences, ¥u = @" and 5 = I with n = 0. Specify
i = (L5, b = 0.9 and a small N to see finite-size effects.

N = 10;

n = 0:N-1;
a =0.8;

b =0.9;
xa = a.”n;
xb = b."n;

Compute and plot the cross power spectral density of the sequences over the complete

interval of normalized frequencies, [~], Specify a rectangular window of length N and
no overlap between segments.

w = -pi:1/1000:p1i;

wind = rectwin (N) ;
nove = 0;
[pxx, f] = cpsd(xa,xb,wind,nove,w) ;

The cross power spectrum of the two sequences has an analytic expression for large IV:

1 1
Rlw) =

1 — e+ 1 — bei<’

Convert this expression to a cross power spectral density by dividing it by 2mN. Compare
the results. The ripple in the cpsd result is a consequence of windowing.

nfac = 2*pi*N;

X = 1./(l-a*exp(-1j*w));
Y = 1./ (1-b*exp(1j*w));
R = X.*Y/nfac;

semilogy (f/pi, abs (pxx))
hold on

semilogy (w/pi,abs (R))
hold off

legend('cpsd', "Analytic")

cpsd

cpsd
Analytic

-1 48 06 04 02 0 0.2 0.4 0.6 0.8 1

Repeat the calculation with N = 25. The curves agree to six figures for N as small as
100.

N = 25;

n = 0:N-1;
xa = a.”’n;
xb = b.”"n;

wind = rectwin (N) ;

[pxx, f] = cpsd(xa,xb,wind,nove,w);
R = X.*Y/ (2*pi*N);

semilogy (f/pi, abs (pxx))

1-211

1 Functions — Alphabetical List

hold on

semilogy (w/pi,abs (R))
hold off

legend ('cpsd', "Analytic')

1DE' . T T T T T T T T T
I cpsd
Analytic
107! ;
1 D-Z \ -

-1 48 06 04 02 0 0.2 0.4 0.6 0.8 1

Dial Tone Recognition
Use cross power spectral density to identify a highly corrupted tone.
The sound signals generated when you dial a number or symbol on a digital phone are

sums of sinusoids with frequencies taken from two different groups. Each pair of tones

1-212

cpsd

contains one frequency of the low group (697 Hz, 770 Hz, 852 Hz, or 941 Hz) and one
frequency of the high group (1209 Hz, 1336 Hz, or 1477 Hz).

1200 1336 1477
Hz Hz Hz

607 Hz | 1 21 3

770Hz | 4

516
52 Hz | /| 8| 9
0

041 Hz | =*

i

Generate signals corresponding to all the symbols. Sample each tone at 4 kHz for half a
second. Prepare a reference table.

fs = 4e3;
t =0:1/£fs:0.5-1/fs;

nms = [lll;l2l;l3l;l4l;l5l;l6l;l7l;I8I;I9I;I*I;IOI;I#I];

ver [697 770 852 941];
hor = [1209 1336 1477];

v = length (ver);
h = length (hor);

for k = 1:v
for 1 = 1:h
idx = h*(k-1)+1;
tone = sum(sin(2*pi*[ver (k) ;hor(l)].*t))";
tones (:,1dx) = tone;
end
end

Plot the Welch periodogram of each signal and annotate the component frequencies. Use
a 200-sample Hamming window to divide the signals into non-overlapping segments and
window the segments.

1-213

1 Functions — Alphabetical List

[pxx, f]

for k
for

= pwelch (tones, hamming (200),0,[], fs);
l:v

1 =1:h

idx = h* (k-1)+1;

ax subplot (v,h,idx) ;
plot(£f,10*1ogl0 (pxx(:,1dx)))
ylim([-80 0])
title (nms (idx))

tx [ver (k) ;hor(1l)1;
ax.XTick tx;
ax.XTickLabel

int2str(tx);

end
end
1 2 3
0 0 0
50 | [50 |'| f' 50 I'| |1|
L F‘“’“""J LT Mf,»,ru‘a'] Kooyl Lﬂrw Ww] LW,J T
697 1200 697 1336 697 1477
4 5 6
0 0 0
50 Jl [50 I [l -50 I mﬁlp'
sanstti¥l h"u""l! YiVivieanna) Mwm"u"‘ Il"‘rm«m .'v“‘-'\l‘l'l"l"‘ilﬂ"' L
7701200 770 1336 770 1477
7 8 9
0 0 0
A 1
50 |1| [50 ﬂ f' -50 ﬂ ﬁ.] |
et I B Y | YT | . et Wisos e
852209 8521336 852 1477
* 0 #
0 0 0
I |“| [|"| "|
S0 .| 50 o o] -50 rﬂr-v"\l b
a41209 04 1336 041 1477

1-214

cpsd

A signal produced by dialing the number 8 is sent through a noisy channel. The received
signal is so corrupted that the number cannot be identified by inspection.

mys = sum(sin(2*pi*[ver(3);hor(2)].*t)) '+5*randn(size(t'));

% To hear, type soundsc(mys, fs)

Compute the cross power spectral density of the corrupted signal and the reference
signals. Window the signals using a 512-sample Kaiser window with shape factor g = 5.
Plot the magnitude of each spectrum.

[pxy, f] = cpsd(mys, tones, kaiser (512,5),100,[]1,fs);

for k = 1:v
for 1 = 1:h
idx = h*(k-1)+1;
ax = subplot (v,h,idx);
plot (£,10*%1ogl0 (abs (pxy (:,idx))))
ylim ([-80 01])
title (nms (idx))
tx = [ver(k);hor(l)];
ax.XTick = tx;
ax.XTickLabel = int2str (tx);
end
end

1-215

1 Functions — Alphabetical List

1-216

1 2 3
0 1]
697 1209 697 1336 697 1477
4 5 6
0 0
|
WMMJIM., -50 N,WJL‘"-YJM -50 i\rfﬂ,m‘"h'-»m.«./lbr‘w
rnzo9 770 1336 Fr0 1477
7 8 9
0 1]
’M’TJM)I#““"“M =50)ﬁ*’}\'\mw -50 ww)w)[”‘\'w'
852209 8521336 852 1477
* 0 #
0 0
LJ wﬂ"'JLTJ W’JL"‘WJL‘“\"
m.p"'.,.w"Tl"'“' bty =50 "-M -50
a4 P09 94 1336 941 1477

The digit in the corrupted signal has the spectrum with the highest peaks and the

highest RMS value.
[~,loc] =

digit = nms(loc)

digit =

g

max (rms (abs (pxy)));

. “Cross Spectrum and Magnitude-Squared Coherence”

cpsd

Input Arguments

x, y — Input signals
vectors | matrices
Input signals, specified as vectors or matrices.

Example: cos (pi/4* (0:159))+randn (1, 160) specifies a sinusoid embedded in white
Gaussian noise.

Data Types: single | double
Complex Number Support: Yes

window — Window
integer | vector | []

Window, specified as an integer or as a row or column vector. Use window to divide the
signal into segments.

+ If window is an integer, then cpsd divides x and y into segments of length window
and windows each segment with a Hamming window of that length.

+ If window is a vector, then cpsd divides x and y into segments of the same length as
the vector and windows each segment using window.

If the length of x and vy cannot be divided exactly into an integer number of segments
with noverlap overlapping samples, then the signals are truncated accordingly.

If you specify window as empty, then cpsd uses a Hamming window such that x and y
are divided into eight segments with noverlap overlapping samples.

For a list of available windows, see “Windows”.

Example: hann (N+1) and (1-cos (2*pi* (0:N) '/N)) /2 both specify a Hann window of
length N + 1.

Data Types: single | double

noverlap — Number of overlapped samples
positive integer | []

Number of overlapped samples, specified as a positive integer.

1-217

1 Functions — Alphabetical List

1-218

* If window is scalar, then noverlap must be smaller than window.

+ If window is a vector, then noverlap must be smaller than the length of window.

If you specify noverlap as empty, then cpsd uses a number that produces 50% overlap
between segments. If the segment length is unspecified, the function sets noverlap to
LIN/4.5 |, where N is the length of the input and output signals.

Data Types: double | single

nf£t — Number of DFT points
positive integer | []

Number of DFT points, specified as a positive integer. If you specify nfft as empty, then
cpsd sets the parameter to max(256,2P), where p = llog, N1 for input signals of length V.

Data Types: single | double
£s — Sample rate
positive scalar

Sample rate, specified as a positive scalar. The sample rate is the number of samples per
unit time. If the unit of time is seconds, then the sample rate has units of Hz.

w — Normalized frequencies
vector

Normalized frequencies, specified as a row or column vector with at least two elements.
Normalized frequencies are in rad/sample.

Example:w = [pi/4 pi/2]

Data Types: double

£ — Frequencies
vector

Frequencies, specified as a row or column vector with at least two elements. The
frequencies are in cycles per unit time. The unit time is specified by the sample rate, fs.
If £s has units of samples/second, then f has units of Hz.

Example: fs = 1000; £ = [100 200]

Data Types: double

cpsd

freqrange — Frequency range for cross power spectral density estimate
'onesided' | 'twosided' | 'centered'

Frequency range for cross power spectral density estimate, specified as 'onesided’,
"twosided', or 'centered'. The default is 'onesided' for real-valued signals and
"twosided' for complex-valued signals.

* 'onesided' — Returns the one-sided estimate of the cross power spectral density of
two real-valued input signals, x and y. If nfft is even, pxy has nfft/2 + 1 rows and
is computed over the interval [0,7] rad/sample. If nfft is odd, pxy has (nfft + 1)/2
rows and the interval is [0,m) rad/sample. If you specify fs, the corresponding
intervals are [0,fs/2] cycles/unit time for even nfft and [0,fs/2) cycles/unit time for
odd nfft.

* 'twosided' — Returns the two-sided estimate of the cross power spectral density of
two real-valued or complex-valued input signals, x and y. In this case, pxy has nfft
rows and is computed over the interval [0,2m) rad/sample. If you specify fs, the
interval is [0,fs) cycles/unit time.

* 'centered' — Rreturns the centered two-sided estimate of the cross power spectral
density of two real-valued or complex-valued input signals, x and y. In this case, pxy
has nfft rows and is computed over the interval (—m,r] rad/sample for even nfft and
(—1,17) rad/sample for odd nfft. If you specify fs, the corresponding intervals are (—
£s/2, £s5/2] cycles/unit time for even nfft and (—£s/2, £s/2) cycles/unit time for odd
nfft.

Data Types: char

Output Arguments

pxy — Cross power spectral density
vector | matrix | three-dimensional array

Cross power spectral density, returned as a vector, matrix, or three-dimensional array.

w — Normalized frequencies
vector

Normalized frequencies, returned as a real-valued column vector.

1-219

1 Functions — Alphabetical List

1-220

+ If pxy is one-sided, w spans the interval [0,77] when nfft is even and [0,;1) when nfft
is odd.

+ If pxy is two-sided, w spans the interval [0,2m).

+ If pxy is DC-centered, w spans the interval (—m,1z] when nfft is even and (—mz,;7) when
nfft is odd.

Data Types: double | single

£ — Frequencies
vector

Frequencies, returned as a real-valued column vector.

Data Types: double | single

Definitions

Cross Power Spectral Density

The cross power spectral density is the distribution of power per unit frequency and is
defined as

P (@= Y R, (m)e’""

m=—oo

The cross-correlation sequence is defined as

ny (m)= E{xn+my; } = E{xny:hm }a

where x, and y, are jointly stationary random processes, —0 <n <o, —co<n <o, and £
{+} 1s the expected value operator.

Algorithms

cpsd uses Welch’s averaged, modified periodogram method of spectral estimation.

cpsd

References

[1] Rabiner, Lawrence R., and B. Gold. Theory and Application of Digital Signal
Processing. Englewood Cliffs, NdJ: Prentice-Hall, 1975, pp. 414—419.

[2] Welch, Peter D. “The Use of the Fast Fourier Transform for the Estimation of Power
Spectra: A Method Based on Time Averaging Over Short, Modified
Periodograms.” IEEE Transactions on Audio and Electroacoustics, Vol. AU-15,
June 1967, pp. 70-73.

[3] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal
Processing. 2nd Ed. Upper Saddle River, NJ: Prentice Hall, 1999.

See Also

mscohere | pburg | pcov | peig | periodogram | pmcov | pmtm | pmusic | pwelch
| pyulear | tfestimate

Topics
“Cross Spectrum and Magnitude-Squared Coherence”

Introduced before R2006a

1-221

1 Functions — Alphabetical List

1-222

cusum

Detect small changes in mean using cumulative sum

Syntax
[iupper,ilower] = cusum(x)

cusum (x,climit,mshift, tmean, tdev)

[iupper, ilower]

[iupper,ilower] = cusum(,'all')

[iupper, ilower, uppersum, lowersum] = cusum ()

cusum ()

Description

[iupper,ilower] = cusum(x) returns the first index of the upper and lower

cumulative sums of x that have drifted beyond five standard deviations above and below
a target mean. The minimum detectable mean shift is set to one standard deviation. The
target mean and standard deviations are estimated from the first 25 samples of x.

[iupper,ilower] = cusum(x,climit,mshift, tmean, tdev) specifies climit, the
number of standard deviations that the upper and lower cumulative sums are allowed to
drift from the mean. It also specifies the minimum detectable mean shift, the target
mean, and the target standard deviation.

[iupper,ilower] = cusum(,'all') returns all the indices at which the upper
and lower cumulative sums exceed the control limit.

[iupper, ilower, uppersum, lowersum] = cusum () also returns the upper and
lower cumulative sums.

cusum () with no output arguments plots the upper and lower cumulative sums

normalized to one standard deviation above and below the target mean.

cusum

Examples

cusum Default Values

Generate and plot a 100-sample random signal with a linear trend. Reset the random
number generator for reproducible results.

rng ('default")

rand(1,100);
linspace(0,1,100);

rnds
trnd

fnc = rnds + trnd;

plot (fnc)

1-223

1 Functions — Alphabetical List

08r T

0.6 1
0.4 A/ 1

02r 7

Apply cusum to the function using the default values of the input arguments.

cusum (fnc)

1-224

cusum

Standard Errors

CUSUM Control Chart
+= 0.760971 &y = 0.341922
rget

}ﬁar
ge
50 T T T

m /

0 hfofV. N

0 10 20 30 40 50 60 70 80 o0 100
Samples

Compute the mean and standard deviation of the first 25 samples. Apply cusum using
these numbers as the target mean and the target standard deviation. Highlight the point
where the cumulative sum drifts more than five standard deviations beyond the target
mean. Set the minimum detectable mean shift to one standard deviation.

mfnc = mean (fnc(1:25));
sfnc = std(fnc(1:25));

cusum (fnc, 5,1,mfnc, sfnc)

1-225

1 Functions — Alphabetical List

Standard Errors

1-226

CUSUM Control Chart
1= 0.760971

}ﬁamﬁ Uhﬁgﬂ

.= 0.341922

50 T T T

20

LW v.
0 TaNyS

0 10 20 30 40 50 60 70
Samples

Repeat the calculation using a negative linear trend.

nnc = rnds - trnd;

cusum (nnc)

80

90

100

cusum

Standard Errors

CUSUM Control Chart
+= 0.518547 &y = 0.328522
rget

}ﬁar
ge
20 T T T

60 [\L .

-100 | "

0 10 20 30 40 50 60 70 80 o0 100
Samples

-120

Unstable Motion Detection

Generate a signal resembling motion about an axle that becomes unstable due to wear.
Add white Gaussian noise of variance 1/9. Reset the random number generator for
reproducible results.

rng default
sz = 200;

dr = airy(2,linspace(-14.9371,1.2,s2));
rd dr + sin(2*pi*(l:sz)/5) + randn(l,sz)/3;

1-227

1 Functions — Alphabetical List

Plot the growing background drift and the resulting signal.

plot (dr)
hold on
plot(xrd,'.-")
hold off

2_5 T T T T T T T T T

151 ‘

—

W\

|
i
lf“q H

05 |

————
—

———

|

—
S—
e

0 20 40 G0 80 100 120 140 180 180 200

Find the mean and standard deviation if the drift is not present and there is no noise.
Plot the ideal noiseless signal and its stable background.

id = 0.3*sin(2*pi*(1l:sz)/20);
st = id + sin(2*pi* (1l:s2)/5);
mf = mean(st)

1-228

cusum

sf = std(st)

plot (id)

hold on
plot(st,'.-")
hold off

mf

-3.6463e-16

st

0.7401

1-229

1 Functions — Alphabetical List

1.5 T T T T T T T T T

0.5
W '| W i y M W '| W i x M

_,,1 -5 i i i i i i i i i
1] 20 40 60 80 100 4120 140 160 180 200

Use the CUSUM control chart to pinpoint the onset of instability. Assume that the
system becomes unstable when the signal is three standard deviations beyond its ideal
behavior. Specify a minimum detectable shift of one standard deviation.

cusum(rd, 3,1,mf, sf)

1-230

cusum

Standard Errors

CUSUM Control Chart

. Hiarget = -0.000000 Piarget 0.740094

14 1 1
|

121 i

101 B
|

B - -

|

E - -

at ?J :

7 III, ||' ||| 4

U IWIII h“ HIJI
27 I' \ \ il \ .
& |
_4 i i i i i i i i i
0 20 40 60 80 100 120 140 160 180
Samples

200

Make the violation criterion more strict by increasing the minimum detectable shift.

Return all instances of unwanted drift.

cusum(rd,3,1.2,mf,sf, 'all'")

1-231

1 Functions — Alphabetical List

CUSUM Control Chart
y ;;target = -0.000000 "target = 0.740094

Standard Errors

|II ' 'II'|I||I|LI| WV
ot IJI \ || If I\ I l |
O

_‘4 i i i i i i i i i
0 20 40 60 80 100 120 140 180 180 200

Samples

oL ww AT

Golf Scorecards

Every hole in golf has an associated "par" that indicates the expected number of strokes
needed to sink the ball. Skilled players usually complete each hole with a number of
strokes very close to par. It is necessary to play several holes and let scores accumulate
before a clear winner emerges in a match.

Ben, Jen, and Ken play a full round, which consists of 18 holes. The course has an
assortment of par-3, par-4, and par-5 holes. At the end of the game, the players tabulate
their scores.

1-232

cusum

hole = 1:18;

par = [4 353453444535 444314];
nms = {'Ben';'Jen';'Ken'};

Ben = [4 342 3523343233332 3];
Jen = [4 343 4434445344553 3];
Ken = [4 34 3554444535454 35];

T = table(hole',par',Ben',Jen',Ken',
'VariableNames', ['hole'; '"par';nms])

T=18x5 table

hole par Ben Jen Ken
1 4 4 4 4
2 3 3 3 3
3 5 4 4 4
4 3 2 3 3
5 4 3 4 5
6 5 5 4 5
7 3 2 3 4
8 4 3 4 4
9 4 3 4 4
10 4 4 4 4
11 5 3 5 5
12 3 2 3 3
13 5 3 4 5
14 4 3 4 4
15 4 3 5 5
16 4 3 5 4

The player whose lower cumulative sum drifts the most below par at the end of the round
wins. Compute the sums for the three players to determine the winner. Make every shift
in mean detectable by setting a small threshold.

[~,b,~,Bensum] = cusum(Ben-par,1l,1le-4,0);
[~,3,~,Jensum] = cusum(Jen-par,1l,1le-4,0);
[~,k,~,Kensum] = cusum(Ken-par,1l,1le-4,0);

plot ([Bensum; Jensum; Kensum] ")
legend (nms, 'Location', 'best’)

1-233

1 Functions — Alphabetical List

Ben
-14 Jen

Ken
—1'5 1 1 1 1 1 1 1 1

Ben wins the round. Simulate their next game by adding or subtracting a stroke per hole
at random.

Ben = Ben+randi(3,1,18)-2;
Jen Jen+randi (3,1,18)-2;
Ken Ken+randi(3,1,18)-2;

[~,b,~,Bensum] = cusum(Ben-par,1l,1le-4,0);
[~,3,~,Jensum] = cusum(Jen-par,1l,1le-4,0);
[~,k,~,Kensum] = cusum(Ken-par,1,1le-4,0);

plot ([Bensum; Jensum; Kensum] ")
legend (nms, 'Location', 'best')

1-234

cusum

D \ T T T T T
0N N\ |
4 F 4
6 i
B .
ETils i
A2 F Ben -
Jen
Ken
_14 i i i i
0 2 4 G 8
Input Arguments

x — |nput signal
vector

Input signal, specified as a vector.
Example: reshape (rand (100,1)*[-1 1],1,200)

Data Types: single | double

18

1-235

1 Functions — Alphabetical List

1-236

climit — Control limit
5 (default) | real scalar

Control limit, specified as a real scalar expressed in standard deviations.
Data Types: single | double

mshift — Minimum mean shift to detect
1 (default) | real scalar

Minimum mean shift to detect, specified as a real scalar expressed in standard
deviations.

Data Types: single | double

tmean — Target mean
mean (x(1:25)) (default) | real scalar

Target mean, specified as a real scalar. If tmean is not specified, then it is estimated as
the mean of the first 25 samples of x.

Data Types: single | double

tdev — Target standard deviation
std(x(1:25)) (default) | real scalar

Target standard deviation, specified as a real scalar. If tdev is not specified, then it is
estimated as the standard deviation of the first 25 samples of x.

Data Types: single | double

Output Arguments

iupper, ilower — Out-of-control point indices
integer scalars | integer vectors

Out-of-control point indices, returned as integer scalars or vectors. If all signal samples
are within the specified tolerance, then cusum returns empty iupper and ilower
arguments.

uppersum, lowersum — Upper and lower cumulative sums
vectors

cusum

Upper and lower cumulative sums, returned as vectors.

Definitions

CUSUM Control Chart

The CUSUM control chart is designed to detect small incremental changes in the mean
of a process.

Given a sequence X, X, X3, ..., X, With estimated average m, and estimated standard
deviation o,, define upper and lower cumulative process sums using:

* Upper cumulative sum

U 0, 1=
" |max(O,U,, +x,-m, —inc,), i>1
* Lower sum
0, 1=
* |min(0,L_, +x,-m_ +inc,), i>1

The variable n, represented in cusum by the mshift argument, is the number of
standard deviations from the target mean, tmean, that make a shift detectable.

A process violates the CUSUM criterion at the sample x; if it obeys U; > co, or L; <—co,.
The control limit ¢ is represented in cusum by the climit argument.

By default, the function returns the first violation it detects. If you specify the 'all"'
flag, the function returns every violation.

See Also

findchangepts | mean

Introduced in R2016a

1-237

1 Functions — Alphabetical List

1-238

czt

Chirp Z-transform

Syntax

y = czt(x,m,w,a)
y = czt(x)

Description

y = czt(x,m,w,a) returns the chirp Z-transform of signal x. The chirp Z-transform is
the Z-transform of x along a spiral contour defined by w and a. m is a scalar that specifies
the length of the transform, w is the ratio between points along the z-plane spiral contour
of interest, and scalar a is the complex starting point on that contour. The contour, a
spiral or “chirp” in the z-plane, is given by

z = a*(w.”=(0:m-1))
y = czt (x) uses the following default values:

* m=length(x)
* w=exp(-J*2*pi/m)

c a=1

With these defaults, czt returns the Z-transform of x at m equally spaced points around
the unit circle. This is equivalent to the discrete Fourier transform of x, or £ft (x). The
empty matrix [] specifies the default value for a parameter.

If x is a matrix, czt (x,m, w, a) transforms the columns of x.

Examples

czt

CZT of a Random Vector

Create a random vector, x, of length 1013. Compute its DFT using czt.

rng default
X = randn (1013,1);
y = czt(x);

Narrow-Band Section of a Frequency Response
Use czt to zoom in on a narrow-band section of a filter's frequency response.

Design a 30th-order lowpass FIR filter using the window method. Specify a sample rate
of 1 kHz and a cutoff frequency of 125 Hz. Use a rectangular window. Find the transfer
function of the filter.

fs = 1000;

d = designfilt('lowpassfir','FilterOrder',30, ' 'CutoffFrequency',125,
'DesignMethod', 'window', 'Window', @rectwin, 'SampleRate', fs);

h = tf(d);

Compute the DFT and the CZT of the filter. Restrict the frequency range of the CZT to
the band between 100 and 150 Hz. Generate 1024 samples in each case.

m = 1024;
y = fft(h,m);

f1 = 100;

f2 = 150;

w = exp(-j*2*pi* (f2-f1l)/ (m*fs));
a = exp(j*2*pi*fl/fs);

z = czt(h,m,w,a);

Plot the transforms. Zoom in on the area of interest.

fn = (0O:m-1)"'/m;
fy = fs*fn;
fz = (f2-f1)*fn + f1;

subplot(2,1,1)
plot (fy,abs (y))
axis([fl f2 0 1.2])

1-239

1 Functions — Alphabetical List

title('FET")

subplot(2,1,2)

plot (fz,abs (z))
axis ([f1 £2 0 1.2])
title('CZT")

1-240

xlabel ('Frequency (Hz)")
FFT
1F T ~ i
05t T~ T
0 i I I I I I I N L]
100 105 110 115 120 125 130 135 140 145 150
CZT
ik T — i
05 T~ 1
D i i i i i i i - -I — "]
100 105 110 115 120 125 130 135 140 145 150
Frequency (Hz)
Diagnostics

If m, w, or a is not a scalar, czt gives the following error message:

czt

Inputs M, W, and A must be scalars.

Algorithms

czt uses the next power-of-2 length FFT to perform a fast convolution when computing
the z-transform on a specified chirp contour [1].

References

[1] Rabiner, Lawrence R., and Bernard Gold. Theory and Application of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975, pp. 393—-399.

See Also
fft | freqz

Introduced before R2006a

1-241

1 Functions — Alphabetical List

1-242

db

Convert energy or power measurements to decibels

Syntax

dboutput = db(x)

dboutput = db(x,SignalType)
dboutput = db(x,R)

dboutput = db(x, 'voltage',R)
Description

dboutput = db (x) converts the elements of x to decibels (dB). This syntax assumes
that x contains voltage measurements across a resistance of 1 Q.

dboutput = db(x,SignalType) specifies the signal type represented by the elements
of x as either 'voltage' or 'power'.

dboutput = db (x,R) specifies the resistance, R, for voltage measurements.

dboutput = db(x, 'voltage',R) is equivalent to db (x,R).

Examples

Decibels from Voltage and Power

Express a unit voltage in decibels. Assume that the resistance is 2 ohms. Compare the

10 mg“.g'
answer to the definition, =,
v =1;

R = 2;

db

dboutput =
compvoltage

compvoltage =

-3.0103

-3.

db (v, 2);
[dboutput 10*1ogl0(1/2)]

0103

Convert a vector of power measurements to decibels. Compare the answer to the result of
using the definition.

rng default

X = abs(rand(10,1));

dboutput = db (X, 'power');

comppower =

comppower =
-0.8899 -0.8899
-0.4297 -0.4297
-8.9624 -8.9624
-0.3935 -0.3935
-1.9904 -1.9904
-10.1082 -10.1082
-5.5518 -5.5518
-2.6211 -2.6211
-0.1886 -0.1886
-0.1552 -0.1552

Input Arguments

x — Signal measurements
scalar | vector | matrix | N-D array

Signal measurements, specified as a scalar, vector, matrix, or N-D array.

Data Types: single | double
Complex Number Support: Yes

SignalType — Type of signal measurements
'voltage' (default) | 'power'

[dboutput 10*1ogl0 (X)]

1-243

1 Functions — Alphabetical List

1-244

Type of signal measurements, specified as either 'voltage' or 'power’'. If you specify
SignalType as 'power', then all elements of x must be nonnegative.

Data Types: char

R — Resistive load
1 Q (default) | positive scalar

Resistive load, specified as a positive scalar expressed in ohms. This argument is ignored
if you specify SignalType as 'power'.

Data Types: single | double

Output Arguments

dboutput — Energy or power measurements in decibels
scalar | vector | matrix | N-D array

Energy or power measurements in decibels, returned as an array with the same
dimensions as x.

2
10 10g10 (|x| /R)
If x contains voltage measurements, then dboutput is

If the input x contains power measurements, then dboutput is 10 logy(x.

See Also
db2mag | db2pow | mag2db | pow2db

Introduced in R2011b

db2mag

db2mag

Convert decibels to magnitude

Syntax

y = db2mag (ydb)

Description

y = db2mag (ydb) returns the magnitude measurements, y, that correspond to the
decibel (dB) values specified in ydb. The relationship between magnitude and decibels is

Examples

Magnitudes of Random Numbers

Generate a 2-by-4-by-2 array of Gaussian random numbers. Assume the numbers are
expressed in decibels and compute the corresponding magnitudes.

r = randn(2,4,2);

mags = db2mag (r)

mags =
mags(:,:,1) =

1.0639 0.7710

1.2351 1.1044
mags (:,:,2) =

1.5098 0.85601

1.0374 0.9513
0.8602 1.0402
1.0871 1.0858

1-245

1 Functions — Alphabetical List

,_\
w
N
o
(@2

1.4182 0.9928 0.9

-
)

Use the definition to check the calculation.

chck = 10.7(xr/20)

chck =
chck(:,:,1) =
1.0639 0.7710 1.0374 0.9513
1.2351 1.1044 0.8602 1.0402
chck(:,:,2) =
1.50098 0.856 1.0871 1.0858
1.3755 1.4182 0.9928 0.9767
Input Arguments

ydb — Input array in decibels
scalar | vector | matrix | N-D array

Input array in decibels, specified as a scalar, vector, matrix, or N-D array. When ydb is
nonscalar, db2mag is an element-wise operation.

Data Types: single | double

Output Arguments

y — Magnitude measurements
scalar | vector | matrix | N-D array

Magnitude measurements, returned as a scalar, vector, matrix, or N-D array of the same
size as ydb.

1-246

db2mag

See Also
db | db2pow | mag2db | pow2db

Introduced in R2008a

1-247

1 Functions — Alphabetical List

db2pow

Convert decibels to power

Syntax

y = db2pow (ydb)

Description

y = db2pow (ydb) returns the power measurements, y, that correspond to the decibel
(dB) values specified in ydb. The relationship between power and decibels is

Examples

Power Values of Random Numbers

Generate a 2-by-4-by-2 array of Gaussian random numbers. Assume the numbers are
expressed in decibels and compute the corresponding power measurements.

r = randn(2,4,2);

pows = db2pow (r)

pows =
s(:, ,l) =
1.1318 0.5944 1.0762 0.9050
1.5254 1.2196 0.7400 1.0821
pows (:,:,2) =
2.2795 0.7328 1.1818 1.1789

1-248

db2pow

1.8921

2.0114

.9856

Use the definition to check the calculation.

chck = 10.7(xr/10)

chck =
chck(:,:,1)
1.1318 .5944
1.5254 .2196
chck(:,:,2)
2.2795 .7328
1.8921 .0114
Input Arguments

ydb — Input array in decibels
scalar | vector | matrix | N-D array

.0762
.7400

.1818
.9856

.9050
.0821

.1789
.9539

Input array in decibels, specified as a scalar, vector, matrix, or N-D array. When ydb is

nonscalar, db2pow is an element-wise operation.

Data Types: single | double

Output Arguments

y — Power measurements
scalar | vector | matrix | N-D array

Power measurements, returned as a scalar, vector, matrix, or N-D array of the same size

as ydb.

1-249

1 Functions — Alphabetical List

1-250

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™,

See Also
db | db2mag | mag2db | pow2db

Introduced in R2007b

dct

dct

Discrete cosine transform

Syntax

y = dct(x)
y = dct(x,n)

y = dct(x,n,dim)

dct (, 'Type',dcttype)

L
I

Description

y = dct (x) returns the unitary discrete cosine transform of input array x. The output y
has the same size as x. If x has more than one dimension, then dct operates along the
first array dimension with size greater than 1.

y = dct (x,n) zero-pads or truncates the relevant dimension of x to length n before
transforming.

y = dct (x,n,dim) computes the transform along dimension dim. To input a dimension
and use the default value of n, specify the second argument as empty, [].

y = dct(, '"Type',dcttype) specifies the type of discrete cosine transform to

compute. See “Discrete Cosine Transform” on page 1-261 for details. This option can be
combined with any of the previous syntaxes.

Examples

Energy Stored in DCT Coefficients

Find how many DCT coefficients represent 99% of the energy in a sequence.

1-251

1 Functions — Alphabetical List

X (1:100) + 50*cos((1:100)*2*pi/40);

X = dct(x);

[XX,ind] = sort (abs(X), 'descend');

i=1;

while norm(X(ind(1l:1)))/norm(X) < 0.99
i=1i+ 1;

end

needed = i;

Reconstruct the signal and compare it to the original signal.

X (ind (needed+1l:end)) = 0;
xx = 1dct (X) ;

plot ([x;xx]")

legend ('Original', ['Reconstructed, N = ' int2str (needed)],
'Location', 'SouthEast"')

1-252

dct

140 T T T T T T T T T
/i"
120 N
100 N
N
Criginal .
Reconstructed, M =3

0 10 20 30 40 50 G0 70 80 90 100

Image Data Compression

Load a file that contains depth measurements of a mold used to mint a United States

penny. The data, taken at the National Institute of Standards and Technology, are

sampled on a 128-by-128 grid. Display the data.

load penny

surf (P)
view(2)
colormap copper

1-253

1 Functions — Alphabetical List

shading interp
axis 17 square off

Compute the discrete cosine transform of the image data. Operate first along the rows
and then along the columns.

Q = dct (P, []1,1);
R = dct(Q, [],2);

Find what percentage of DCT coefficients contain 99.9% of the energy in the image.
X = R(:);

[~,ind] = sort(abs(R(:)), 'descend');

1-254

dct

coeffs = 1;

while norm(X(ind(l:coeffs)))/norm(X) < 0.999
coeffs = coeffs + 1;

end

fprintf ('$3.1£%% of the coefficients are sufficient\n',coeffs/numel (R)*100)

6.9% of the coefficients are sufficient

Reconstruct the image using only the necessary coefficients.

R(abs(R) < X(coeffs)) = 0;

S = idct (R, [1,2);
T = idect(s,[],1);

Display the reconstructed image.

surf (T)

view (2)

shading interp
axis 1j square off

1-255

1 Functions — Alphabetical List

Image Resizing

Load a file that contains depth measurements of a mold used to mint a United States
penny. The data, taken at the National Institute of Standards and Technology, are
sampled on a 128-by-128 grid. Display the data.

load penny
surf (P)

view(2)
colormap copper

1-256

dct

shading interp
axis 17 square off

Compute the discrete cosine transform of the image data using the DCT-1 variant.
Operate first along the rows and then along the columns.

Q = dct(p, [],1, ' 'Type',1);
R = dct(Q, [],2, 'Type',1);

Invert the transform. Truncate the inverse so that each dimension of the reconstructed
image is one-half the length of the original.

S = idct(R,size(P,2)/2,2, 'Type',1);
T idct (S, size(P,1)/2,1, 'Type',1);

1-257

1 Functions — Alphabetical List

1-258

Invert the transform again. Zero-pad the inverse so that each dimension of the
reconstructed image is twice the length of the original.

U = idct (R,size(P,2)*2,2, 'Type',1);
V = idct(U,size(P,1)*2,1, 'Type',1);

Display the original and reconstructed images.

surf (V)
view (2)
shading interp
hold on

surf (P)
view(2)
shading interp

surf (T)

view (2)

shading interp
hold off

axis 1j equal off

dct

. “DCT for Speech Signal Compression”

Input Arguments

x — Input array
vector | matrix | N-D array | gpuArray object

Input array, specified as a real-valued or complex-valued vector, matrix, N-D array, or
gpulArray object.

See “GPU Computing” (Parallel Computing Toolbox) and GPU System Requirements for
details on gpuArray objects.

1-259

https://www.mathworks.com/products/availability.html#DM

1 Functions — Alphabetical List

Example: sin (2*pi* (0:255) /4) specifies a sinusoid as a row vector.
Example: sin (2*pi*[0.1;0.3]1*(0:39)) ' specifies a two-channel sinusoid.

Data Types: single | double
Complex Number Support: Yes

n — Transform length
positive integer scalar

Transform length, specified as a positive integer scalar.

Data Types: single | double

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar.

Data Types: single | double

dcttype — Discrete cosine transform type
2 (default) | 1 | 3| 4

Discrete cosine transform type, specified as a positive integer scalar from 1 to 4. See
“Discrete Cosine Transform” on page 1-261 for the definitions of the different types of
DCT.

Data Types: single | double

Output Arguments

y — Discrete cosine transform
vector | matrix | N-D array | gpuArray object

Discrete cosine transform, returned as a real-valued or complex-valued vector, matrix, N-
D array, or gpuArray object.

1-260

dct

Definitions

Discrete Cosine Transform

The discrete cosine transform (DCT) is closely related to the discrete Fourier transform.
You can often reconstruct a sequence very accurately from only a few DCT coefficients.
This property is useful for applications requiring data reduction.

The DCT has four standard variants. For a signal x of length N, and with §,, the
Kronecker delta, the transforms are defined by:

DCT-1:
2 1 1 n
(k) =,/— (n) c (n-1Xk-1)
W) =[5 23 Ji+6, 10, 145, +0, OS[N-1 " j
DCT-2:
2 & 1 i
B)= = T @n-1)k-1
y(k) \/;nz{x(n) o5, cos(zN(n —1)())
DCT-3:
2 & 1 pis
(k)=\/: (n) ——— —(n-1D2k-1)
Y N;xn o COS(2N n)
DCT-4:

y(k) = \/Ei x(n)cos| ——(2n —1)2k 1)
N & AN

The series are indexed from n = 1 and £ = 1 instead of the usual n = 0 and & = 0, because
MATLAB vectors run from 1 to N instead of from 0 to N — 1.

All variants of the DCT are unitary (or, equivalently, orthogonal): To find their inverses,

switch k£ and n in each definition. In particular, DCT-1 and DCT-4 are their own
inverses, and DCT-2 and DCT-3 are inverses of each other.

1-261

1 Functions — Alphabetical List

1-262

References

[1] Jain, A. K. Fundamentals of Digital Image Processing. Englewood Cliffs, NJ: Prentice-
Hall, 1989.

[2] Pennebaker, W. B., and J. L. Mitchell. JPEG Still Image Data Compression Standard.
New York: Van Nostrand-Reinhold, 1993.

[3] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal
Processing. 2nd Ed. Upper Saddle River, NdJ: Prentice Hall, 1999.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™,

Usage notes and limitations:

C and C++ code generation for dct requires DSP System Toolbox™ software.

The length of the transform dimension must be a power of two. If specified, the pad or
truncation value must be constant. Expressions or variables are allowed if their
values do not change.

See Also

dect2 | £fft | idct | idct2

Topics
“DCT for Speech Signal Compression”

Introduced before R2006a

decimate

decimate

Decimation — decrease sampling rate

Syntax

y = decimate(x,r)

y = decimate(x r,n)

y = decimate(x,r,'fir")
y = decimate(x,r,n, 'fir")
Description

Decimation reduces the original sampling rate of a sequence to a lower rate. It is the
opposite of interpolation. decimate lowpass filters the input to guard against aliasing
and downsamples the result.

y = decimate (x, r) reduces the sampling rate of x, the input signal, by a factor of r.
The decimated vector, v, is shortened by a factor of r so that length (y) =

ceil (length (x) /r). By default, decimate uses a lowpass Chebyshev Type I IIR filter
of order 8.

y = decimate (%, r,n) uses a Chebyshev filter of order n. Orders above 13 are not
recommended because of numerical instability. The function displays a warning in those

cases.

y = decimate (x,r, 'fir') uses an FIR filter designed using the window method with
a Hamming window. The filter has order 30.

y = decimate(x,r,n,'fir') uses an FIR filter of order n.

Note For better results when r is greater than 13, divide r into smaller factors and call
decimate several times.

1-263

1 Functions — Alphabetical List

Input Arguments

x — |nput signal
vector

Input signal, specified as a vector.

Data Types: double

r — Decimation factor
positive integer scalar

Decimation factor, specified as a positive integer scalar.

Data Types: double

n — Filter order
positive integer scalar

Filter order, specified as a positive integer scalar. When using the IIR filter, avoid values
above 13 because sometimes the results are unreliable.

Data Types: double

Output Arguments

y — Decimated signal
vector

Decimated signal, returned as a vector.

Data Types: double
Examples

Decimate a Signal

Create a sinusoidal signal sampled at 4 kHz. Decimate it by a factor of four.

1-264

decimate

Original

Decimated

t 0:.00025:1;
x = sin(2*pi*30*t) + sin(2*pi*60*t);
y = decimate(x,4);

Plot the original and decimated signals.

subplot 211

stem(0:120,x(1:121),'filled', "'markersize', 3)
grid on

xlabel 'Sample number',ylabel 'Original'
subplot 212

stem(0:30,y(1:31),'filled', 'markersize', 3)
grid on

xlabel 'Sample number',ylabel 'Decimated'

0 20 40 60 80 100
Sample number

120

T T T T
L]

_TI MT crtle,

T

0 5 10 15 20 25

Sample number

30

1-265

1 Functions — Alphabetical List

Decimate a Signal Using the Chebyshev Filter

Create a signal with two sinusoids. Decimate it by a factor of 13 using a Chebyshev IIR
filter of order 5. Plot the original and decimated signals.

r = 13;

n = 16:365;

1x = length(n);

X = sin(2*pi*n/153) + cos(2*pi*n/127);

plot(0:1x-1,x%x,'0o")

hold on

y = decimate(x,r,5);

stem(1lx-1:-r:0, fliplr(y),'ro', 'filled', 'markersize', 4)

legend ('Original', 'Decimated’', 'Location', "south'")

xlabel ('Sample number')
ylabel ('Signal")

1-266

decimate

Signal

< Original

—& Decimated

_1 i i i i i i
0 50 100 150 200 250 300 350

Sample number

The original and decimated signals have matching last elements.

Decimate a Signal Using the FIR Filter

Create a signal with two sinusoids. Decimate it by a factor of 13 using an FIR filter of
order 82. Plot the original and decimated signals.

r = 13;

n = 16:365;

1x = length(n);

X = sin(2*pi*n/153) + cos(2*pi*n/127);

1-267

1 Functions — Alphabetical List

plot(0:1x-1,x,'o")

hold on

y = decimate(x,r,82,'"'fir'");
stem(0:r:1x-1,y, 'ro', 'filled", 'markersize', 4)

legend ('Original', 'Decimated’', 'Location', 'south')
xlabel ('Sample number')
ylabel ('Signal')

Original

—® Decimated

_1 i i i i i i

0 50 100 150 200 250 300 350
Sample number

The original and decimated signals have matching first elements.

1-268

decimate

Algorithms

decimate uses decimation algorithms 8.2 and 8.3 from [1].

1

decimate creates a lowpass filter. The default is a Chebyshev Type I filter designed
using chebyl. This filter has normalized cutoff frequency 0.8/r and passband
ripple 0.05 dB. Sometimes, the specified filter order produces passband distortion
due to roundoff errors accumulated from the convolutions needed to create the
transfer function. The filter order is automatically reduced when distortion causes
the magnitude response at the cutoff frequency to differ from the ripple by more than
10-S.

When the 'fir' option is chosen, decimate uses firl to design a lowpass FIR
filter with cutoff frequency 1/r.

When using the FIR filter, decimate filters the input sequence in only one direction.
This conserves memory and is useful for working with long sequences. In the IIR
case, decimate applies the filter in forward and reverse directions using filtfilt
to remove phase distortion. This in effect doubles the filter order. In both cases, the
function minimizes transient effects at both ends of the signal by matching endpoint
conditions.

Finally, decimate resamples the data by selecting every rth point from the interior
of the filtered signal. The resampled sequence is such that y (end) matches x (end)
when the IIR filter is used and vy (1) matches x (1) in the FIR case.

References

[1] Digital Signal Processing Committee of the IEEE Acoustics, Speech, and Signal

Processing Society, eds. Programs for Digital Signal Processing. New York: IEEE
Press, 1979, chap. 8.

See Also

chebyl | downsample | filtfilt | firl | interp | resample

Introduced before R2006a

1-269

1 Functions — Alphabetical List

1-270

demod

Demodulation for communications simulation

Syntax

x = demod(y, fc, fs, 'method")

x = demod(y, fc, fs, 'method’, opt)
x = demod(y, fc, fs, 'pwm', 'centered’)
Description

demod performs demodulation, that is, it obtains the original signal from a modulated
version of the signal. demod undoes the operation performed by modulate.

% demod (y, fc, fs, 'method’) and

X demod (y, fc, £s, 'method’, opt) demodulate the real carrier signal y with a
carrier frequency fc and sampling frequency fs, using one of the options listed below for
method. (Note that some methods accept an option, opt.)

Note Use demod and modulate in the Signal Processing Toolbox with real-valued
signals to obtain real-valued outputs. demod and modulate are not intended to accept
complex-valued inputs or produce complex-valued outputs.

demod

Method Description

amdsb-sc Amplitude demodulation, double sideband, suppressed carrier.
Multiplies y by a sinusoid of frequency fc and applies a fifth-order

o Butterworth lowpass filter using filtfilt.

am X = y.*cos (2*pi*fc*t);
[b,al = butter(5,fc*2/fs);
x = filtfilt(b,a,x);

amdsb-tc Amplitude demodulation, double sideband, transmitted carrier.
Multiplies y by a sinusoid of frequency fc and applies a fifth-order
Butterworth lowpass filter using filtfilt.
X = y.*cos (2*pi*fc*t);
[b,al] = butter(5,fc*2/fs);
x = filtfilt (b, a,x);
If you specify opt, demod subtracts scalar opt from x. The default
value for opt is 0.

amssb Amplitude demodulation, single sideband. Multiplies y by a sinusoid
of frequency fc and applies a fifth-order Butterworth lowpass filter
using filtfilt.
X = y.*cos (2*pi*fc*t);
[b,a] = butter (5, fc*2/fs);
x = filtfilt(b,a,x);

fm Frequency demodulation. Demodulates the FM waveform by
modulating the Hilbert transform of v by a complex exponential of
frequency -fc Hz and obtains the instantaneous frequency of the
result.

pm Phase demodulation. Demodulates the PM waveform by modulating

the Hilbert transform of y by a complex exponential of frequency -
fc Hz and obtains the instantaneous phase of the result.

1-271

1 Functions — Alphabetical List

1-272

Method

Description

ppm

Pulse-position demodulation. Finds the pulse positions of a pulse-
position modulated signal y. For correct demodulation, the pulses
cannot overlap. x is length length (t) *fc/fs.

pwm

Pulse-width demodulation. Finds the pulse widths of a pulse-width
modulated signal y. demod returns in x a vector whose elements
specify the width of each pulse in fractions of a period. The pulses in
y should start at the beginning of each carrier period, that is, they
should be left justified.

gam

Quadrature amplitude demodulation.

[x1,x2] = demod(y, fc, fs, 'gam') multiplies y by a cosine and
a sine of frequency fc and applies a fifth-order Butterworth lowpass
filter using filtfilt.

x1l = y.*cos (2*pi*fc*t);
X2 = y.*sin (2*pi*fc*t);
[b,al = butter(5,fc*2/fs);

x1l = filtfilt (b,a,xl);

X2

filtfilt (b, a,x2);

The default method is 'am'. In all cases except 'ppm' and 'pwm', x 1s the same size as

y.

If v is a matrix, demod demodulates its columns.

x = demod(y, fc, fs, 'pwm', 'centered') finds the pulse widths assuming they are
centered at the beginning of each period. x is length 1ength (y) *fc/fs.

See Also

fskdemod | gengamdemod | modulate | mskdemod | pamdemod | pmdemod |

gamdemod | vco

demod

Introduced before R2006a

1-273

1 Functions — Alphabetical List

1-274

design

Apply design method to filter specification object

Syntax

filt = design (D)

filt = design (D, METHOD)

filt = design (D,METHOD, PARAM1, VALUEL, PARAM2, VALUE2, .. .)
(

filt = design (D,METHOD, OPTS)

Description

filt = design (D) uses the filter specifications object D to generate a filter filt.
When you do not provide a design method as an input argument, design uses a default
design method. Use designmethods (D, 'default') to see the default design method
for your filter specifications object.

filt = design (D,METHOD) forces the design method specified by METHOD. METHOD
must be one of the options returned by designmethods. Use
designmethods (D, 'default') to determine which algorithm is used by default.

The design method you provide as the designmethod input argument must be one of the
methods returned by

designmethods (d)

To help you design filters more quickly, the input argument METHOD accepts a variety of
special keywords that force design to behave in different ways. The following table
presents the keywords you can use for METHOD and how design responds to the keyword.

Design Method Description of the Design Response

Keyword

'FIR' Forces design to produce an FIR filter. When no FIR design
method exists for object D, design returns an error.

design

Design Method Description of the Design Response
Keyword
"TIR' Forces design to produce an IIR filter. When no IIR design

method exists for object D, design returns an error.

'"ALLFIR' Produces filters from every applicable FIR design method for the
specifications in D, one filter for each design method. As a result,
design returns multiple filters in the output object.

'"ALLIIR' Produces filters from every applicable ITR design method for the
specifications in D, one filter for each design method. As a result,
design returns multiple filters in the output object.

'ALL' Designs filters using all applicable design methods for the
specifications object D. As a result, design returns multiple
filters, one for each design method. design uses the design
methods in the order that designmethods (D) returns them.

Keywords are not case sensitive. When design returns multiple filters in the output
object, use indexing to see the individual filters. For example, to see the third filter in
filt, enter:

filt (3)

filt = design (D,METHOD, PARAM]1,VALUE1, PARAM2,VALUE2, .. .) specifies design-
method options. Use help (D, METHOD) for complete information on which design-
method-specific options are available. You can also use designopts (D, METHOD) for a
less-detailed listing of the design-method-specific options.

filt = design (D,METHOD, OPTS) specifies design-method options using the structure
OPTS. OPTS is usually obtained from designopts and then specified as an input to
design. Use help (D, METHOD) for more information on optional inputs.

Examples

Design of Lowpass Filters

Design an FIR equiripple lowpass filter. Specify a passband edge frequency of 0.2m rad/
sample and a stopband edge frequency of 0.25m rad/sample. Set the passband ripple to
0.5 dB and the stopband attenuation to 40 dB. Use the default equiripple method.

1-275

1 Functions — Alphabetical List

D = fdesign.lowpass('Fp,Fst,Ap,Ast',0.2,0.25,0.5,40);
filt = design(D);

Display a pole-zero plot of the design.

fvtool (filt, '"Analysis', 'polezero')

PolefZero Plot
T T T T T T
' ,000PECog I
{}{} é E}{}
0.8 o :) i
o : !
06 a § e 1
9] : '
04 1S o O 7
o | o

i no b © 5 : -

E:; ' o : 0 O
T 0 g x 22 3 o T

5 O ©: 0
EL2—p : I

o) 5 ©ig
04F O : 5 ; -
o) : .
06 9% | 4 -
Q &
08F Y5 § P i
Oe : N0
Yo | 0%
A b DGO@DG 4
-1 0.5 0 0.5 1 15
Real Part

Redesign the filter using the Butterworth method. Matching the passband exactly.
Display the frequency response of the filter.

filt = design (D, 'butter', '"MatchExactly', "passband');

fvtool (filt)

1-276

design

Magnitude (dB)

=100

=200

-300 [

-400

=500

600

=700

-B00

0 01 02 03 04 05 06 07 08 09
Mormalized Frequency (=« rad/sample)

See Also

designmethods | designopts

Introduced in R2009a

1-277

1 Functions — Alphabetical List

designfilt

Design digital filters

Syntax
d = designfilt (resp,Name,Value)

designfilt (d)

Description

d = designfilt (resp,Name,Value) designs a digitalFilter object, d, with
response type resp. Specify the filter further using a set of Name, Value pairs. The
allowed specification sets depend on the response type, resp, and consist of combinations
of the following:

* Frequency constraints correspond to the frequencies at which a filter exhibits a
desired behavior. Examples include 'PassbandFrequency' and
'CutoffFrequency'. (See the complete list under “Name-Value Pair Arguments” on
page 1-308.) You must always specify the frequency constraints.

* Magnitude constraints describe the filter behavior at particular frequency ranges.
Examples include 'PassbandRipple’' and 'StopbandAttenuation’. (See the
complete list under “Name-Value Pair Arguments” on page 1-308.) designfilt
provides default values for magnitude constraints left unspecified. In arbitrary-
magnitude designs you must always specify the vectors of desired amplitudes.

* 'FilterOrder'. Some design methods let you specify the order. Others produce
minimume-order designs. That is, they generate the smallest filters that satisfy the
specified constraints.

* 'DesignMethod' is the algorithm used to design the filter. Examples include
constrained least squares (' cls') and Kaiser windowing (' kaiserwin'). For some
specification sets, there are multiple design methods available to choose from. In
other cases, you can use only one method to meet the desired specifications.

+ Design options are parameters specific to a given design method. Examples include
'"Window' for the 'window' method and optimization 'Weights' for arbitrary-

1-278

designfilt

magnitude equiripple designs. (See the complete list under “Name-Value Pair
Arguments” on page 1-308.) designfilt provides default values for design options
left unspecified.

* 'SampleRate' is the frequency at which the filter operates. designfilt has a

default sample rate of 2 Hz. Using this value is equivalent to working with
normalized frequencies.

Note If you specify an incomplete or inconsistent set of name-value pairs at the command
line, designfilt offers to open a “Filter Design Assistant” on page 1-317. The assistant
helps you design the filter and pastes the corrected MATLAB code on the command line.

If you call designfilt from a script or function with an incorrect set of specifications,
designfilt issues an error message with a link to open a “Filter Design Assistant” on
page 1-317. The assistant helps you design the filter, comments out the faulty code in the
function or script, and pastes the corrected MATLAB code on the next line.

+ Use filter in the form dataOut = filter (d,dataln) to filter a signal with a
digitalFilter, d.

* Use fvtool to visualize a digitalFilter, d.

* Type d.Coefficients to obtain the coefficients of a digitalFilter, d. For IIR
filters, the coefficients are expressed as second-order sections.

* SeedigitalFilter for a list of the filtering and analysis functions available for use
with digitalFilter objects.

designfilt (d) lets you edit an existing digital filter, d. It opens a “Filter Design
Assistant” on page 1-317 populated with the filter’s specifications, which you can then
modify. This is the only way you can edit a digitalFilter object. Its properties are
otherwise read-only.

Examples

Lowpass FIR Filter

Design a minimum-order lowpass FIR filter with normalized passband frequency 0.25x

rad/s, stopband frequency 0.35x rad/s, passband ripple 0.5 dB, and stopband attenuation

1-279

1 Functions — Alphabetical List

65 dB. Use a Kaiser window to design the filter. Visualize its magnitude response. Use it
to filter a vector of random data.

1pFilt = designfilt('lowpassfir', 'PassbandFrequency',0.25,
'StopbandFrequency', 0.35, 'PassbandRipple', 0.5,

'StopbandAttenuation', 65, 'DesignMethod', 'kaiserwin') ;
fvtool (1pFilt)

Magnltude Respunse [dE]

-30

=40

=50

Magnitude (dB)

60

70t ||'| .

||l

- || My i
-80 ‘““l || [|||r|||||| ||||f1|r' | ||"'||r'||r-| |||

H'WM |

0 01 02 03 0.9
Mormalized Fr‘equency I:x T radfsample}

dataIn = rand(1000,1);
dataOut = filter (lpFilt,dataln);

1-280

designfilt

Magnitude (dB)

Lowpass IIR Filter

Design a lowpass IIR filter with order 8, passband frequency 35 kHz, and passband
ripple 0.2 dB. Specify a sample rate of 200 kHz. Visualize the magnitude response of the

filter. Use it to filter a 1000-sample random signal.

1lpFilt = designfilt('lowpassiir','FilterOrder',8,
'PassbandFrequency', 35e3, 'PassbandRipple', 0.2,
'SampleRate',200e3);

fvtool (1pFilt)

Magnitude Response (dB)

=50 | -,

-100 | - .

150 - N

-200 | \

_25D C i i i | i i i i i i

0 10 20 30 40 50 60 70O 80 a0
Frequency (kHz)

dataIn = randn(1000,1);
dataOut = filter(lpFilt,dataln);

Output the filter coefficients, expressed as second-order sections.

1-281

1 Functions — Alphabetical List

1-282

sos = lpFilt.Coefficients

sos =
0.2666 0.5333 0.2666 1.0000 -0.8346 0.9073
0.1943 0.3886 0.1943 1.0000 -0.9586 0.7403
0.1012 0.2023 0.1012 1.0000 -1.1912 0.5983
0.0318 0.0636 0.0318 1.0000 -1.3810 0.5090

Highpass FIR Filter

Design a minimum-order highpass FIR filter with normalized stopband frequency 0.25x

rad/s, passband frequency 0.35x rad/s, passband ripple 0.5 dB, and stopband
attenuation 65 dB. Use a Kaiser window to design the filter. Visualize its magnitude
response. Use it to filter 1000 samples of random data.

hpFilt = designfilt ('highpassfir','StopbandFrequency',0.25,
'PassbandFrequency',0.35, 'PassbandRipple', 0.5,
'StopbandAttenuation', 65, 'DesignMethod', 'kaiserwin') ;
fvtool (hpFilt)

designfilt

i
Cad
=

T

Magnitude (dB)

-

= =
T T
1

i
[ms]
=

Magnitude Response (dB)

A
o

i
tn
=]
T
—

0 03 04 05 06 07 08 09
Nnrmalized Frequency (= rad/sample)

dataIn = randn(1000,1);
dataOut = filter (hpFilt,dataln);

Highpass IIR Filter

Design a highpass IIR filter with order 8, passband frequency 75 kHz, and passband
ripple 0.2 dB. Specify a sample rate of 200 kHz. Visualize the filter's magnitude response.
Apply the filter to a 1000-sample vector of random data.

hpFilt = designfilt('highpassiir','FilterOrder', 8,
'PassbandFrequency', 75e3, 'PassbandRipple', 0.2,

1-283

1 Functions — Alphabetical List

'SampleRate',200e3);
fvtool (hpFilt)

-50 [S -
-100 [# -

-150 | g -

Magnitude (dB)
hY

200 | £ .

250F |

0 0 20 30 40 50 60 70 80 20
Frequency (kHz)

dataIn = randn(1000,1);
dataOut = filter (hpFilt,dataln);

Bandpass FIR Filter

Design a 20th-order bandpass FIR filter with lower cutoff frequency 500 Hz and higher
cutoff frequency 560 Hz. The sample rate is 1500 Hz. Visualize the magnitude response
of the filter. Use it to filter a random signal containing 1000 samples.

1-284

designfilt

Magnitude (dB)

bpFilt = designfilt ('bandpassfir','FilterOrder', 20,

'CutoffFrequencyl', 500, 'CutoffFrequency2', 560,

'SampleRate',1500);

fvtool (bpFilt)

Magnitude Response (dB)

=10

Fa
=
T

o
=
T

¢n
=
T

|
—ﬁﬂ-I

/

5
-
>
D
-
N
7

_?.D = i i i I i

—r—

100 200 300 400
Frequency (Hz)

datalIn = randn(1000,1);

da

taOut = filter (bpFilt,dataln);

Output the filter coefficients.

b

b

= bpFilt.Coefficients

Columns 1 through 7

I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
l
I
I
|
500

700

1-285

1 Functions — Alphabetical List

-0.0113 0.0067 0.0125 -0.0445 0.0504 0.0101 -0.1070

Columns 8 through 14

0.1407 -0.0464 -0.1127 0.1913 -0.1127 -0.0464 0.1407

Columns 15 through 21

-0.1070 0.0101 0.0504 -0.0445 0.0125 0.0067 -0.0113

Bandpass IIR Filter

Design a 20th-order bandpass IIR filter with lower 3-dB frequency 500 Hz and higher 3-
dB frequency 560 Hz. The sample rate is 1500 Hz. Visualize the frequency response of
the filter. Use it to filter a 1000-sample random signal.

bpFilt = designfilt ('bandpassiir','FilterOrder', 20,
'HalfPowerFrequencyl', 500, 'HalfPowerFrequency2',560,
'SampleRate',1500);

fvtool (bpFilt)

1-286

designfilt

Magnitude (dB)

Magnitude Response (dB)

-100

L

o

(=
T

M

on

=
T

=300

=350 [

P

=

=
T

I

_4DD C i i i i I i i i 1

0 100 200 300 400 500 600 700
Frequency (Hz)

dataIn = randn(1000,1);
dataOut = filter (bpFilt,dataln);

Bandstop FIR Filter

Design a 20th-order bandstop FIR filter with lower cutoff frequency 500 Hz and higher
cutoff frequency 560 Hz. The sample rate is 1500 Hz. Visualize the magnitude response
of the filter. Use it to filter 1000 samples of random data.

bsFilt = designfilt ('bandstopfir','FilterOrder', 20,
'CutoffFrequencyl', 500, 'CutoffFrequency2', 560,

1-287

1 Functions — Alphabetical List

'SampleRate',1500);
fvtool (bsFilt)
Magnitude Response (dB)
D __-___-I_- _--I __ T — T T _ _I o IT-_
[
05F | | i
[
A III.I | -
I". I
451 : 1
S 2 ". | |
2 \ |
2250 | I
= '| [
% -3 1 I l 7
= \ I
35F I'. I,lI .
| I
" \ -
45F i/ -
Vi
5 - — J .
0 100 200 300 400 500 600 700
Frequency (Hz)
dataIn = randn(1000,1);
dataOut = filter (bsFilt,dataln);
Bandstop IIR Filter

Design a 20th-order bandstop IIR filter with lower 3-dB frequency 500 Hz and higher 3-
dB frequency 560 Hz. The sample rate is 1500 Hz. Visualize the magnitude response of
the filter. Use it to filter 1000 samples of random data.

1-288

designfilt

Magnitude (dB)

bsFilt = designfilt ('bandstopiir','FilterOrder', 20,
'HalfPowerFrequencyl', 500, 'HalfPowerFrequency2', 560,
'SampleRate',1500);

fvtool (bsFilt)

Magnitude Response (dB)

40t | .

_ || _
-60 l

-100 | 1

_120 C i i i | 7

i I i i
0 100 200 300 400 500 600 700
Frequency (Hz)

dataIn = randn(1000,1);
dataOut = filter (bsFilt,dataln);

FIR Differentiator

Design a full-band differentiator filter of order 7. Display its zero-phase response. Use it
to filter a 1000-sample vector of random data.

1-289

1 Functions — Alphabetical List

dFilt = designfilt('differentiatorfir','FilterOrder',7);
fvtool (dFilt, 'MagnitudeDisplay', 'Zero-phase')

Zero-phase Response

- rd -
2 57
@ ol
3 e
— =
= L o 4
% 15 -
< ,ff'/
=
Vs
1r / 1
0.5 T
P
P
0 | .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
MNormalized Frequency (= rad/sample)

dataIn = randn(1000,1);
dataOut = filter (dFilt,dataln);

FIR Hilbert Transformer

Design a Hilbert transformer of order 18. Specify a normalized transition width of 0.25x
rad/s. Display in linear units the magnitude response of the filter. Use it to filter a 1000-
sample vector of random data.

1-290

designfilt

hFilt = designfilt('hilbertfir','FilterOrder',18, 'TransitionWidth',0.25);
fvtool (hFilt, 'MagnitudeDisplay', 'magnitude’')

Magnitude Response

T T
R B = N e

Magnitude
=T~ = I = I = N =
Cad % (] [in 5] =] (s]
T T T T T T

=
(g%]
T

0.1

——

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Normalized Frequency (= rad/sample)

datalIn = randn(1000,1);
dataOut = filter (hFilt,datalIn);

Arbitrary-Magnitude FIR Filter

You are given a signal sampled at 1 kHz. Design a filter that stops frequencies between
100 Hz and 350 Hz and frequencies greater than 400 Hz. Specify a filter order of 60.

Visualize the frequency response of the filter. Use it to filter a 1000-sample random
signal.

1-291

1 Functions — Alphabetical List

mbFilt

designfilt ('arbmagfir', 'FilterOrder', 60,

'Frequencies',0:50:500, "Amplitudes',[1 1 1 0 0 0 01 1 0 01,
'SampleRate',1000) ;
fvtool (mbFilt)

Magnitude Response (dB)

10 -

|
=20

Magnitude (dB)
o
[

40 | IrI'l I |f- 1
l ||ﬂ| (Vi IInII || | |
| |IPI|'ﬁ'||'|/\II| |
B0 r || 1f|f| ||- |ﬂ| 4
| | It
60 |||‘
-f0r 1 1 1 i I I I 1 I:H
0 a0 100 150 200 250 300 3% 400 450
Frequency (Hz)
dataln randn (1000,1);
datalOut

filter (mbFilt,dataln);

“Practical Introduction to Digital Filter Design”
“Filter Design Gallery”

“Practical Introduction to Digital Filtering”

1-292

designfilt

Input Arguments

resp — Filter response and type

'"lowpassfir' | '"lowpassiir' | '"highpassfir' | 'highpassiir' |
'bandpassfir' | 'bandpassiir' | 'bandstopfir' | 'bandstopiir' |
'differentiatorfir' | '"hilbertfir' | "arbmagfir'

Filter response and type, specified as a character vector. Click one of the possible values
of resp to expand a table of allowed specification sets.

'lowpassfir'

Choose this option to design a finite impulse response (FIR) lowpass filter. This example
uses the fifth specification set from the following table.

d =

designfilt ('lowpassfir',
'FilterOrder', 25,
'PassbandFrequency', 400,
'StopbandFrequency', 550,
'DesignMethod', '1ls"',
'PassbandWeight', 1,
'StopbandWeight', 2,
'SampleRate',2000)

% Response type

% Filter order

% Design method

% Frequency constraints

% Design method options

% Sample rate

* Ifyouomit 'FilterOrder' (when required), or any of the frequency constraints,
designfilt throws an error.

+ If you omit the magnitude constraints, designfilt uses default values.

+ If you omit 'DesignMethod', designfilt uses the default design method for the
specification set.

+ If you omit the design method options, designfilt uses the defaults for the design
method of choice.

+ Ifyou omit 'SampleRate', designfilt sets it to 2 Hz.

Filter Order
Argument Names

Frequency
Constraint
Argument Names

Magnitude
Constraint
Argument Names

'DesignMethod’
Argument Values

Design Option
Argument Names

N/A Minimum-
order design)

'PassbandFrequ
ency'

'PassbandRippl
e A}

'equiripple’

(default)

N/A

1-293

1 Functions — Alphabetical List

Filter Order Frequency Magnitude 'DesignMethod’' |Design Option
Argument Names |Constraint Constraint Argument Values |Argument Names
Argument Names |Argument Names
'StopbandFrequ |'StopbandAtten |'kaiserwin' 'ScalePassband
ency' uation' '
'FilterOrder' 'HalfPowerFreq |N/A 'maxflat’' N/A
uency'
'FilterOrder' 'CutoffFrequen |N/A 'window' 'Window'
cy'
'ScalePassband
'FilterOrder' 'CutoffFrequen |'PassbandRippl |'cls' 'PassbandOffse
cy' e' t'!
'StopbandAtten 'ZeroPhase'
uation'
'FilterOrder' 'PassbandFrequ |N/A 'equiripple’ 'PassbandWeigh
ency' (default) &0
'StopbandFrequ ' StopbandWeigh
ency' t!
'1s' 'PassbandWeigh
t A
'StopbandWeigh
t Al
'lowpassiir'’

Choose this option to design an infinite impulse response (IIR) lowpass filter. This
example uses the first specification set from the following table.

d =

1-294

'SampleRate',2000)

designfilt ('lowpassiir', ... %
'PassbandFrequency',400, ... 3
'StopbandFrequency', 550,
'PassbandRipple', 4, ... 3
'StopbandAttenuation', 55,
'DesignMethod', 'ellip', ... %
'MatchExactly', "passband', ... 3

Response type

Frequency constraints

Magnitude constraints

Design method

Design method options

Sample rate

designfilt

* If youomit 'FilterOrder' (when required), or any of the frequency constraints,
designfilt throws an error.

+ If you omit the magnitude constraints, designfilt uses default values.

+ If you omit 'DesignMethod’', designfilt uses the default design method for the
specification set.
+ If you omit the design method options, designfilt uses the defaults for the design
method of choice.

+ If you omit 'SampleRate’', designfilt sets it to 2 Hz.

Filter Order
Argument Names

Frequency
Constraint
Argument Names

Magnitude
Constraint
Argument Names

'DesignMethod’
Argument Values

Design Option
Argument Names

N/A (Minimum- 'PassbandFrequ |'PassbandRippl |'butter' 'MatchExactly'
order design) ency' e' (default)
A\l A\l A\l A\l
'StopbandFrequ |'StopbandAtten chebyl iErenzecEly
ency' uation' 'cheby?2’ 'MatchExactly'
'ellip’ 'MatchExactly'

'FilterOrder' 'HalfPowerFreqg [N/A 'butter' N/A

uency'
'FilterOrder' 'PassbandFrequ |'PassbandRippl |'chebyl' N/A

ency' e'
'FilterOrder' 'PassbandFrequ |'PassbandRippl |'ellip’ N/A

ency' e'

'StopbandAtten
uation'

'FilterOrder' 'StopbandFrequ |'StopbandAtten |'cheby2' N/A

ency' uation'
'"NumeratorOrde |'HalfPowerFreqg |N/A 'butter' N/A
r' uency'
'DenominatorOr
der'

1-295

1 Functions — Alphabetical List

'highpassfir’

Choose this option to design a finite impulse response (FIR) highpass filter. This example
uses the first specification set from the following table.

d =

oo

designfilt ('highpassfir"',
'StopbandFrequency', 400,
'PassbandFrequency', 550,
'StopbandAttenuation', 55,
'PassbandRipple’, 4,
'DesignMethod’', 'kaiserwin',
'ScalePassband', false,
'SampleRate',2000)

Response type
Frequency constraints

oo

Magnitude constraints

o

o

Design method
Design method options
Sample rate

o

o

+ Ifyouomit 'FilterOrder' (when required), or any of the frequency constraints,
designfilt throws an error.

+ If you omit the magnitude constraints, designfilt uses default values.

+ If you omit 'DesignMethod', designfilt uses the default design method for the
specification set.

+ If you omit the design method options, designfilt uses the defaults for the design
method of choice.

¢ If you omit 'SampleRate', designfilt sets it to 2 Hz.

Filter Order Frequency Magnitude 'DesignMethod' |[Design Option
Argument Names |Constraint Constraint Argument Values |Argument Names
Argument Names |Argument Names
N/A Minimum- 'StopbandFrequ |'StopbandAtten |'equiripple' N/A
order design) ency' uation' (default)
'PassbandFrequ |'PassbandRippl b CRaLATe 'ScalePassband
ency' e'
'FilterOrder' 'CutoffFrequen |N/A 'window' 'Window'
cy'
'ScalePassband
A\l

1-296

designfilt

Filter Order Frequency Magnitude 'DesignMethod’' |Design Option
Argument Names |Constraint Constraint Argument Values |Argument Names
Argument Names |Argument Names
'FilterOrder' 'CutoffFrequen |'StopbandAtten |'cls' 'PassbandOffse
cy' uation' t!
'PassbandRippl 'ZeroPhase'
e A}
'FilterOrder' 'StopbandFrequ |[N/A 'equiripple' 'PassbandWeigh
ency' (default) & "
'PassbandFrequ ' StopbandWeigh
ency' t'!
'1s' 'PassbandWeigh
t A
'StopbandWeigh
t Al
'highpassiir'

Choose this option to design an infinite impulse response (ITR) highpass filter. This
example uses the first specification set from the following table.

d = designfilt('highpassiir’',
'StopbandFrequency', 400,

'PassbandFrequency', 550,

'StopbandAttenuation', 55,

'PassbandRipple’', 4,

'DesignMethod’', 'chebyl"',
'MatchExactly', "stopband',
'SampleRate',2000)

% Response type
% Frequency constraints

% Design method
% Design method options

% Sample rate

% Magnitude constraints

+ If youomit 'FilterOrder' (when required), or any of the frequency constraints,
designfilt throws an error.

+ If you omit the magnitude constraints, designfilt uses default values.

+ If you omit 'DesignMethod’', designfilt uses the default design method for the

specification set.

+ If you omit the design method options, designfilt uses the defaults for the design

method of choice.

1-297

1 Functions — Alphabetical List

+ If you omit 'SampleRate', designfilt sets it to 2 Hz.

Filter Order Frequency Magnitude 'DesignMethod’' |Design Option
Argument Names |Constraint Constraint Argument Values |Argument Names
Argument Names |Argument Names
N/A (Minimum- 'StopbandFrequ |'StopbandAtten |'butter' 'MatchExactly'
order design) ency' uation' (default)
'PassbandFrequ |'PassbandRippl clsloyd daitelBazely
ency' e' 'cheby?2’ 'MatchExactly'
'ellip’ 'MatchExactly'
'FilterOrder' 'HalfPowerFreq |N/A 'butter’ N/A
uency'
'FilterOrder' 'PassbandFrequ |'PassbandRippl |'chebyl' N/A
ency' e'
'FilterOrder' 'PassbandFrequ |'StopbandAtten |'ellip' N/A
ency' uation'
'PassbandRippl
el
'FilterOrder' 'StopbandFrequ |'StopbandAtten |'cheby?2' N/A
ency' uation'
'NumeratorOrde |'HalfPowerFreq |N/A 'butter' N/A
r' uency'
'DenominatorOr
der'
'bandpassfir'’

Choose this option to design a finite impulse response (FIR) bandpass filter. This
example uses the fourth specification set from the following table.

d =

1-298

designfilt ('bandpassfir',

'FilterOrder', 86,

'StopbandFrequencyl', 400,

% Response type

% Filter order

'PassbandFrequencyl', 450,
'PassbandFrequency2', 600,
'StopbandFrequency2', 650,

% Frequency constraints

designfilt

'DesignMethod', '1ls"',
'StopbandWeightl', 1,
'PassbandWeight',
'StopbandWeight2', 3,
'SampleRate',2000)

2,

% Design method
% Design method options

% Sample rate

+ If youomit 'FilterOrder' (when required), or any of the frequency constraints,
designfilt throws an error.

+ If you omit the magnitude constraints, designfilt uses default values.

+ If you omit 'DesignMethod’', designfilt uses the default design method for the
specification set.

+ If you omit the design method options, designfilt uses the defaults for the design
method of choice.

+ If you omit 'SampleRate', designfilt sets it to 2 Hz.

Filter Order Frequency Magnitude 'DesignMethod’' |Design Option
Argument Names |Constraint Constraint Argument Values |Argument Names
Argument Names |Argument Names
N/A (Minimum- 'StopbandFrequ |'StopbandAtten |'equiripple' N/A
order design) encyl' uationl' (default)
'PassbandFrequ |'PassbandRippl kaiserwin 'ScalePassband
encyl' e'
'PassbandFrequ |'StopbandAtten
ency?2' uation2'
'StopbandFrequ
ency?2'
'FilterOrder' 'CutoffFrequen [N/A 'window' 'Window'
cyl'
'ScalePassband
'CutoffFrequen u
cy2'

1-299

1 Functions — Alphabetical List

Filter Order Frequency Magnitude 'DesignMethod’' |Design Option
Argument Names |Constraint Constraint Argument Values |Argument Names
Argument Names |Argument Names
'FilterOrder' 'CutoffFrequen |'StopbandAtten |'cls' 'PassbandOffse
cyl' uationl' t!
'CutoffFrequen |'PassbandRippl 'ZeroPhase'
cy2' e'
'StopbandAtten
uation2'
'FilterOrder' 'StopbandFrequ |N/A 'equiripple’ 'StopbandWeigh
encyl' (default) 1"’
'PassbandFrequ 'PassbandWeigh
encyl' t'!
'PassbandFrequ 'StopbandWeigh
ency?2' t2!
e 1s StopbandWeigh
, tl'
ency2
'PassbandWeigh
t A
'StopbandWeigh
t2'
'bandpassiir’

Choose this option to design an infinite impulse response (IIR) bandpass filter. This
example uses the first specification set from the following table.

d =

1-300

designfilt ('bandpassiir', ... %
'StopbandFrequencyl', 400,

'PassbandFrequencyl', 450,
'PassbandFrequency2', 600,
'StopbandFrequency2', 650,

'StopbandAttenuationl’', 40,

'PassbandRipple’', 1,
'StopbandAttenuation2', 50,

Response type
% Frequency constraints

% Magnitude constraints

designfilt

'DesignMethod', 'ellip',
'MatchExactly', "passband',

'SampleRate',2000)

% Design method
% Design method options

% Sample rate

+ If youomit 'FilterOrder' (when required), or any of the frequency constraints,
designfilt throws an error.

+ If you omit the magnitude constraints, designfilt uses default values.

+ If you omit 'DesignMethod’', designfilt uses the default design method for the
specification set.

+ If you omit the design method options, designfilt uses the defaults for the design
method of choice.

+ If you omit 'SampleRate', designfilt sets it to 2 Hz.

Filter Order Frequency Magnitude 'DesignMethod’' |Design Option
Argument Names |Constraint Constraint Argument Values |Argument Names
Argument Names |Argument Names
N/A (Minimum- 'StopbandFrequ |'StopbandAtten |'butter' 'MatchExactly'
order design) encyl' uationl' (default)
'PassbandFrequ |'PassbandRippl | chebyl' 'MatchExactly'
encyl’ e' 'cheby?2' 'MatchExactly'
'PassbandFrequ |'StopbandAtten |'€llip’ 'MatchExactly'
ency?2' uation2'
'StopbandFrequ
ency?2'
'FilterOrder' 'HalfPowerFreq |[N/A 'butter' N/A
uencyl'
'HalfPowerFreq
uency2'
'FilterOrder' 'PassbandFrequ |'PassbandRippl |'chebyl' N/A
encyl' e'
'PassbandFrequ
ency?2'

1-301

1 Functions — Alphabetical List

Filter Order Frequency Magnitude 'DesignMethod’' |Design Option
Argument Names |Constraint Constraint Argument Values |Argument Names
Argument Names |Argument Names
'FilterOrder' 'PassbandFrequ |'StopbandAtten |'ellip' N/A
encyl' uationl'
'PassbandFrequ |'PassbandRippl
ency?2' e'
'StopbandAtten
uation2'
'FilterOrder' 'StopbandFrequ |'StopbandAtten |'cheby2' N/A
encyl' uation'
'StopbandFrequ
ency2'
'bandstopfir’

Choose this option to design a finite impulse response (FIR) bandstop filter. This example
uses the fourth specification set from the following table.

d = designfilt ('bandstopfir', % Response type
'FilterOrder',32, ... % Filter order
'PassbandFrequencyl', 400, % Frequency constraints
'StopbandFrequencyl', 500,
'StopbandFrequency2',700,
'PassbandFrequency2',850, ...
'DesignMethod', "1s', ... %
'PassbandWeightl', 1, ... %
'StopbandWeight', 3,
'PassbandWeight2', 5,
'SampleRate',2000) %

Design method
Design method options

Sample rate

+ Ifyouomit 'FilterOrder' (when required), or any of the frequency constraints,
designfilt throws an error.

* If you omit the magnitude constraints, designfilt uses default values.

+ If you omit 'DesignMethod’', designfilt uses the default design method for the
specification set.

+ If you omit the design method options, designfilt uses the defaults for the design
method of choice.

1-302

designfilt

+ If you omit 'SampleRate', designfilt sets it to 2 Hz.

Filter Order
Argument Names

Frequency
Constraint
Argument Names

Magnitude
Constraint
Argument Names

'DesignMethod’
Argument Values

Design Option
Argument Names

N/A Minimum- 'PassbandFrequ |'PassbandRippl |['equiripple' N/A

order design) encyl' el (default)
'StopbandFrequ |'StopbandAtten kaiserwin 'ScalePassband
encyl' uation'
'StopbandFrequ |'PassbandRippl
ency?2' e2'
'PassbandFrequ
ency?2'

'FilterOrder' 'CutoffFrequen [N/A 'window' 'Window'
cyl'

'ScalePassband

'CutoffFrequen u
cy2'

'FilterOrder' 'CutoffFrequen |'PassbandRippl |'cls' 'PassbandOffse
cyl' el’ t!
'CutoffFrequen |'StopbandAtten 'ZeroPhase'
cy2' uation'

'PassbandRippl
e2'

'FilterOrder' 'PassbandFrequ |N/A 'equiripple’ 'PassbandWeigh
encyl' (default) tl!'
'StopbandFrequ 'StopbandWeigh
encyl' £
'StopbandFrequ 'PassbandWeigh
ency?2' t2!
'PassbandFrequ
ency2'

1-303

1 Functions — Alphabetical List

Filter Order
Argument Names

Frequency
Constraint
Argument Names

Magnitude
Constraint
Argument Names

'DesignMethod’
Argument Values

Design Option
Argument Names

'lSV

'PassbandWeigh
tl!'

'StopbandWeigh
t A}

'PassbandWeigh
t2!

'bandstopiir’

Choose this option to design an infinite impulse response (IIR) bandstop filter. This
example uses the first specification set from the following table.

d =

designfilt ('bandstopiir',
'PassbandFrequencyl', 400,
'StopbandFrequencyl', 500,
'StopbandFrequency2',700,
'PassbandFrequency2',850,
'PassbandRipplel’, 1,
'StopbandAttenuation', 55,
'PassbandRipple2’', 1,
'DesignMethod', 'ellip',
'MatchExactly', "both',
'SampleRate',2000)

% Response type

3 Frequency constraints

Magnitude constraints

Design method

Design method options

Sample rate

+ Ifyouomit 'FilterOrder' (when required), or any of the frequency constraints,
designfilt throws an error.

+ If you omit the magnitude constraints, designfilt uses default values.

+ If you omit 'DesignMethod', designfilt uses the default design method for the
specification set.

+ If you omit the design method options, designfilt uses the defaults for the design
method of choice.

+ If you omit 'SampleRate’', designfilt sets it to 2 Hz.

1-304

designfilt

Filter Order
Argument Names

Frequency
Constraint
Argument Names

Magnitude
Constraint
Argument Names

'DesignMethod’
Argument Values

Design Option
Argument Names

N/A (Minimum- 'PassbandFrequ |'PassbandRippl |'butter' 'MatchExactly'
order design) encyl' el' (default)
'StopbandFrequ |'StopbandaAtten | chebyl' 'MatchExactly'
encyl' uation' 'cheby2' 'MatchExactly'
'StopbandFrequ |'PassbandRippl |'€llip’ 'MatchExactly'
ency?2' e2!
'PassbandFrequ
ency?2'
'FilterOrder' 'HalfPowerFreq |N/A 'butter’ N/A
uencyl'
'HalfPowerFreq
uency2'
'FilterOrder' 'PassbandFrequ |'PassbandRippl |'chebyl' N/A
encyl' e'
'PassbandFrequ
ency?2'
'FilterOrder' 'PassbandFrequ |'PassbandRippl |'ellip’ N/A
encyl' e’
'PassbandFrequ |'StopbandAtten
ency?2' uation'
'FilterOrder' 'StopbandFrequ |'StopbandAtten |'cheby2' N/A
encyl' uation'
'StopbandFrequ
ency?2'

'differentiatorfir’

Choose this option to design a finite impulse response (FIR) differentiator filter. This
example uses the second specification set from the following table.

1-305

1 Functions — Alphabetical List

d =

'FilterOrder', 42,

designfilt ('differentiatorfir’',

'PassbandFrequency', 400,
'StopbandFrequency', 500,
'DesignMethod’', 'equiripple',

'PassbandWeight', 1,
'StopbandWeight', 4,

'SampleRate',2000)

o

Response type
Filter order

Frequency constraints

Design method

Design method options

Sample rate

+ If youomit 'FilterOrder"', or any of the frequency constraints when designing a
partial-band differentiator, designfilt throws an error.

+ If you omit 'DesignMethod', designfilt uses the default design method for the
specification set.

+ If you omit the design method options, designfilt uses the defaults for the design
method of choice.

* If you omit 'SampleRate’', designfilt sets it to 2 Hz.

Filter Order Frequency Magnitude 'DesignMethod’' |Design Option
Argument Names |Constraint Constraint Argument Values |Argument Names
Argument Names |Argument Names
'FilterOrder' [N/A N/A 'equiripple' N/A
(default)
'1s! N/A
'FilterOrder' 'PassbandFrequ |N/A 'equiripple’ 'PassbandWeigh
ency'’ (default) o
'StopbandFrequ 'StopbandWeigh
ency' t!
'1s! N/A
'hilbertfir'

Choose this option to design a finite impulse response (FIR) Hilbert transformer filter.
This example uses the specification set from the following table.

d =

1-306

'FilterOrder',12,

designfilt ('hilbertfir',

'TransitionWidth', 400,
'DesignMethod', '1ls"',

'SampleRate',2000)

% Response type
% Filter order
% Frequency constraints
% Design method
% Sample rate

designfilt

If you omit 'FilterOrder' or 'TransitionWidth', designfilt throws an error.

If you omit 'DesignMethod', designfilt uses the default design method for
Hilbert transformers.

If you omit 'SampleRate’', designfilt sets it to 2 Hz.

Filter Order Frequency Magnitude 'DesignMethod’' |Design Option
Argument Names |Constraint Constraint Argument Values |Argument Names
Argument Names |Argument Names
'FilterOrder' 'TransitionWid |[N/A 'equiripple' N/A
th' (default)
'1s'! N/A
'arbmagfir’

Choose this option to design a finite impulse response (FIR) filter of arbitrary magnitude
response. This example uses the second specification set from the following table.

d

'FilterOrder', 88,
'NumBands', 4,

designfilt ('arbmagfir',

'BandFrequenciesl', [0 207,
'BandFrequencies2', [25 40],
'BandFrequencies3', [45 65],

'BandFrequencies4', [70 100],

'BandAmplitudesl', [2 2],
'BandAmplitudes2', [0 0],

'BandAmplitudes3’'
'BandAmplitudes4’

117,

a
» [0 0],

'DesignMethod’', '1ls"',
'BandWeightsl', [1 1]1/10,

'BandWeights3', [2 4

1
'BandWeights2', [3 1],
1

'BandWeights4', [5 1]

'SampleRate',200)

’

’

o0 oo

o

o

o

o

Response type
Filter order
Frequency constraints

Magnitude constraints

Design method
Design method options

% Sample rate

If you omit 'FilterOrder"', or any of the frequency or magnitude constraints,
designfilt throws an error.
If you omit 'DesignMethod', designfilt uses the default design method for the
specification set.

If you omit the design method options, designfilt uses the defaults for the design
method of choice.

1-307

1 Functions — Alphabetical List

+ If you omit 'SampleRate', designfilt sets it to 2 Hz.

Filter Order
Argument Names

Frequency
Constraint
Argument Names

Magnitude
Constraint
Argument Names

'DesignMethod’
Argument Values

Design Option
Argument Names

'FilterOrder' 'Frequencies' 'Amplitudes'’ 'fregsamp' 'Window'
(default)
'equiripple’ 'Weights'
'1ls' 'Weights'
'FilterOrder' 'BandFrequenci |'BandAmplitude |'equiripple' 'BandWeightsl'
esl' s1' (default)
'NumBands'
'BandWeightsN'
A} 3 A} 3
BandFrequenci |'BandAmplitude "1s! "BandWeightsl'
esN' sN'
'BandWeightsN'

Data Types: char

d — Digital filter
digitalFilter object

Digital filter, specified as a digitalFilter object generated by designfilt. Use this
input to change the specifications of an existing digitalFilter.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
). You can specify several name and value pair arguments in any order as
Namel, Valuel, ..., NameN, ValueN.

quotes ('

Not all combinations of Name, Value pairs are valid. The valid combinations depend on
the filter response that you need and on the frequency and magnitude constraints of your

design.

1-308

designfilt

Example: 'FilterOrder', 20, 'CutoffFrequency', 0.4 suffices to specify a lowpass
FIR filter.

Filter Order

FilterOrder — Filter order
positive integer scalar

Filter order, specified as the comma-separated pair consisting of 'FilterOrder' and a
positive integer scalar.

Data Types: double

NumeratorOrder — Numerator order
positive integer scalar

Numerator order of an IIR design, specified as the comma-separated pair consisting of
"NumeratorOrder' and a positive integer scalar.

Data Types: double

DenominatorOrder — Denominator order
positive integer scalar

Denominator order of an IIR design, specified as the comma-separated pair consisting of
'DenominatorOrder' and a positive integer scalar.

Data Types: double
Frequency Constraints

PassbandFrequency, PassbandFrequencyl, PassbandFrequency2 — Passband
frequency
positive scalar

Passband frequency, specified as the comma-separated pair consisting of
'PassbandFrequency' and a positive scalar. The frequency value must be within the
Nyquist range.

'PassbandFrequencyl’ is the lower passband frequency for a bandpass or bandstop
design.

'PassbandFrequency?2' is the higher passband frequency for a bandpass or bandstop
design.

1-309

1 Functions — Alphabetical List

1-310

Data Types: double

StopbandFrequency, StopbandFrequencyl, StopbandFrequency2 — Stopband
frequency
positive scalar

Stopband frequency, specified as the comma-separated pair consisting of
'StopbandFrequency' and a positive scalar. The frequency value must be within the
Nyquist range.

'StopbandFrequencyl' is the lower stopband frequency for a bandpass or bandstop
design

'StopbandFrequency?2' is the higher stopband frequency for a bandpass or bandstop
design.
Data Types: double

CutoffFrequency, CutoffFrequencyl, CutoffFrequency2 — 6-dB frequency
positive scalar

6-dB frequency, specified as the comma-separated pair consisting of
'"CutoffFrequency' and a positive scalar. The frequency value must be within the
Nyquist range.

'"CutoffFrequencyl' is the lower 6-dB frequency for a bandpass or bandstop design.

'"CutoffFrequency?2' is the higher 6-dB frequency for a bandpass or bandstop design.
Data Types: double

HalfPowerFrequency, HalfPowerFrequencyl, HalfPowerFrequency2 — 3-dB
frequency
positive scalar

3-dB frequency, specified as the comma-separated pair consisting of
'"HalfPowerFrequency' and a positive scalar. The frequency value must be within the
Nyquist range.

'"HalfPowerFrequencyl' is the lower 3-dB frequency for a bandpass or bandstop
design.

designfilt

'"HalfPowerFrequency?2' is the higher 3-dB frequency for a bandpass or bandstop
design.

Data Types: double

TransitionWidth — Width of transition region
positive scalar

Width of the transition region between passband and stopband for a Hilbert transformer,
specified as the comma-separated pair consisting of ' TransitionWidth' and a positive
scalar.

Data Types: double

Frequencies — Response frequencies
vector

Response frequencies, specified as the comma-separated pair consisting of
'Frequencies' and a vector. Use this variable to list the frequencies at which a filter of
arbitrary magnitude response has desired amplitudes. The frequencies must be
monotonically increasing and lie within the Nyquist range. The first element of the
vector must be either 0 or —f,/2, where f, is the sample rate, and its last element must be
f/2. If you do not specify a sample rate, designfilt uses the default value of 2 Hz.

Data Types: double

NumBands — Number of bands
positive integer scalar

Number of bands in a multiband design, specified as the comma-separated pair
consisting of 'NumBands' and a positive integer scalar not greater than 10.

Data Types: double

BandFrequenciesl, ..., BandFrequenciesN — Multiband response frequencies
vectors

Multiband response frequencies, specified as comma-separated pairs consisting of
'BandFrequenciesi' and a numeric vector. 'BandFrequenciesi’', where i runs from
1 through NumBands, is a vector containing the frequencies at which the ith band of a
multiband design has the desired values, 'BandAmplitudesi'. NumBands can be at
most 10. The frequencies must lie within the Nyquist range and must be specified in

1-311

1 Functions — Alphabetical List

1-312

monotonically increasing order. Adjacent frequency bands must have the same amplitude
at their junction.

Data Types: double
Magnitude Constraints

PassbandRipple, PassbandRipplel, PassbandRipple2 — Passband ripple
1 (default) | positive scalar

Passband ripple, specified as the comma-separated pair consisting of
'PassbandRipple’ and a positive scalar expressed in decibels.

'PassbandRipplel’ is the lower-band passband ripple for a bandstop design.

'PassbandRipple?2’ is the higher-band passband ripple for a bandstop design.
Data Types: double
StopbandAttenuation, StopbandAttenuationl, StopbandAttenuation2 —

Stopband attenuation
60 (default) | positive scalar

Stopband attenuation, specified as the comma-separated pair consisting of
'StopbandAttenuation' and a positive scalar expressed in decibels.

'StopbandAttenuationl’ is the lower-band stopband attenuation for a bandpass
design.

'StopbandAttenuation2' is the higher-band stopband attenuation for a bandpass
design.
Data Types: double

Amplitudes — Desired response amplitudes
vector

Desired response amplitudes of an arbitrary magnitude response filter, specified as the
comma-separated pair consisting of 'Amplitudes' and a vector. Express the amplitudes
in linear units. The vector must have the same length as 'Frequencies’.

Data Types: double

designfilt

BandAmplitudesl, ..., BandAmplitudesN — Multiband response amplitudes
vectors

Multiband response amplitudes, specified as comma-separated pairs consisting of
'BandAmplitudesi' and a numeric vector. 'BandAmplitudesi', where i runs from 1
through NumBands, is a vector containing the desired amplitudes in the ith band of a
multiband design. NumBands can be at most 10. Express the amplitudes in linear units.
'BandAmplitudesi' must have the same length as 'BandFrequenciesi'. Adjacent
frequency bands must have the same amplitude at their junction.

Data Types: double
Design Method

DesignMethod — Design method
'butter' | 'chebyl' | 'cheby2' | 'cls' | 'ellip' | 'equiripple' |
'fregsamp' | 'kaiserwin' | '"ls' | 'maxflat' | '"window'

Design method, specified as the comma-separated pair consisting of ' DesignMethod'
and a character vector. The choice of design method depends on the set of frequency and
magnitude constraints that you specify.

* 'butter' designs a Butterworth IIR filter. Butterworth filters have a smooth
monotonic frequency response that is maximally flat in the passband. They sacrifice
rolloff steepness for flatness.

* 'chebyl' designs a Chebyshev type I IIR filter. Chebyshev type I filters have a
frequency response that is equiripple in the passband and maximally flat in the
stopband. Their passband ripple increases with increasing rolloff steepness.

* 'cheby2' designs a Chebyshev type II IIR filter. Chebyshev type II filters have a
frequency response that is maximally flat in the passband and equiripple in the
stopband.

* 'cls' designs an FIR filter using constrained least squares. The method minimizes
the discrepancy between a specified arbitrary piecewise-linear function and the filter’s
magnitude response. At the same time, it lets you set constraints on the passband
ripple and stopband attenuation.

+ 'ellip' designs an elliptic IIR filter. Elliptic filters have a frequency response that
is equiripple in both passband and stopband.
* 'equiripple' designs an equiripple FIR filter using the Parks-McClellan algorithm.

Equiripple filters have a frequency response that minimizes the maximum ripple
magnitude over all bands.

1-313

1 Functions — Alphabetical List

1-314

+ 'fregsamp' designs an FIR filter of arbitrary magnitude response by sampling the
frequency response uniformly and taking the inverse Fourier transform.

* 'kaiserwin' designs an FIR filter using the Kaiser window method. The method
truncates the impulse response of an ideal filter and uses a Kaiser window to
attenuate the resulting truncation oscillations.

* '1s' designs an FIR filter using least squares. The method minimizes the
discrepancy between a specified arbitrary piecewise-linear function and the filter’s
magnitude response.

* 'maxflat' designs a maximally flat FIR filter. These filters have a smooth
monotonic frequency response that is maximally flat in the passband.

+ 'window' uses a least-squares approximation to compute the filter coefficients and
then smooths the impulse response with 'Window"'.

Data Types: char

Design Method Options

Window — Window
vector | window name character vector | function handle | cell array

Window, specified as the comma-separated pair consisting of 'Window' and a vector of
length N + 1, where N is the filter order. 'Window' can also be paired with a window
name or function handle that specifies the function used to generate the window. Any
such function must take N + 1 as first input. Additional inputs can be passed by
specifying a cell array. By default, 'Window' is an empty vector for the ' fregsamp'
design method and @hamming for the 'window' design method.

For a list of available windows, see “Windows”.

Example: 'Window', hann (N+1) and 'Window', (1-cos (2*pi* (0:N) '/N)) /2 both
specify a Hann window to use with a filter of order N.

Example: 'Window', "hamming' specifies a Hamming window of the required order.
Example: 'Window', @mywindow lets you define your own window function.

Example: 'Window', {@kaiser, 0.5} specifies a Kaiser window of the required order
with shape parameter 0.5.

Data Types: double | char | function handle | cell

designfilt

MatchExactly — Band to match exactly
'stopband' | 'passband' | 'both'

Band to match exactly, specified as the comma-separated pair consisting of
'MatchExactly' and either 'stopband’', 'passband', or 'both'. 'both' is available
only for the elliptic design method, where it is the default. ' stopband"' is the default for
the 'butter' and 'cheby2' methods. 'passband’ is the default for 'chebyl'.

Data Types: char

PassbandOffset — Passband offset
0 (default) | positive scalar

Passband offset, specified as the comma-separated pair consisting of
'PassbandOffset' and a positive scalar expressed in decibels. ' PassbandOffset’
specifies the filter gain in the passband.

Example: 'PassbandOffset', 0 results in a filter with unit gain in the passband.

Example: 'PassbandOffset', 2 results in a filter with a passband gain of 2 dB or
1.259.

Data Types: double

ScalePassband — Scale passband
true (default) | false

Scale passband, specified as the comma-separated pair consisting of 'ScalePassband’
and a logical scalar. When you set 'ScalePassband' to true, the passband is scaled,
after windowing, so that the filter has unit gain at zero frequency.

Example: 'Window', {@kaiser, 0.1}, 'ScalePassband', true help specify a filter
whose magnitude response at zero frequency is exactly 0 dB. This i1s not the case when
you specify 'ScalePassband’', false. To verify, visualize the filter with fvtool and
zoom 1in.

Data Types: logical

ZeroPhase — Zero phase
false (default) | true

Zero phase, specified as the comma-separated pair consisting of ' ZeroPhase' and a
logical scalar. When you set 'ZeroPhase' to true, the zero-phase response of the

1-315

1 Functions — Alphabetical List

1-316

resulting filter is always positive. This lets you perform spectral factorization on the
result and obtain a minimum-phase filter from it.

Data Types: logical
PassbandWeight, PassbandWeightl, PassbandWeight2 — Passband optimization

weight
1 (default) | positive scalar

Passband optimization weight, specified as the comma-separated pair consisting of
'PassbandWeight' and a positive scalar.

'PassbandWeightl' is the lower-band passband optimization weight for a bandstop
FIR design.

'PassbandiWeight2' is the higher-band passband optimization weight for a bandstop
FIR design.

Data Types: double

StopbandWeight, StopbandWeightl, StopbandWeight2 — Stopband optimization
weight

1 (default) | positive scalar

Stopband optimization weight, specified as the comma-separated pair consisting of
'StopbandWeight' and a positive scalar.

'StopbandWeightl' is the lower-band stopband optimization weight for a bandpass
FIR design.

'StopbandWeight2' is the higher-band stopband optimization weight for a bandpass
FIR design.

Data Types: double

Weights — Optimization weights
1 (default) | positive scalar | vector

Optimization weights, specified as the comma-separated pair consisting of 'Weights'
and a positive scalar or a vector of the same length as 'Amplitudes’.

Data Types: double

designfilt

BandWeightsl, ..., BandWeightsN — Multiband weights
1 (default) | positive scalar | vectors

Multiband weights, specified as comma-separated pairs consisting of 'BandWeightsi'
and a set of positive scalars or of vectors. 'BandWeightsi', where i runs from 1 through
NumBands, 1s a scalar or vector containing the optimization weights of the ith band of a
multiband design. If specified as a vector, 'BandWeightsi' must have the same length
as 'BandAmplitudesi’.

Data Types: double
Sample Rate

SampleRate — Sample rate
2 (default) | positive scalar

Sample rate, specified as the comma-separated pair consisting of ' SampleRate' and a
positive scalar expressed in hertz. To work with normalized frequencies, set
'SampleRate' to 2, or simply omit it.

Data Types: double

Output Arguments

d — Digital filter
digitalFilter object

Digital filter, returned as a digitalFilter object.

Definitions

Filter Design Assistant

If you specify an incomplete or inconsistent set of design parameters, designfilt offers
to open a Filter Design Assistant.

(In the argument description for resp there is a complete list of valid specification sets
for all available response types.)

1-317

1 Functions — Alphabetical List

The assistant behaves differently if you call designfilt at the command line or within
a script or function.

You are given a signal sampled at 2 kHz. You are asked to design a lowpass FIR filter
that suppresses frequency components higher than 650 Hz. The “cutoff frequency”
sounds like a good candidate for a specification parameter. At the MATLAB command
line, you type the following.

Fsamp = 2e3;

Fctff = 650;

dee = designfilt('lowpassfir', ' 'CutoffFrequency',Fctff,
'SampleRate', Fsamp) ;

Something seems to be amiss because this dialog box appears on your screen.

B Filter Dasign Assistant = Bl

Filter Design Assistance is available.
Error detected when calling designfilt
‘You must specify a valid set of specifications

Use the Filter Design Assistant to generate MATLAB code with valid syntax
and filter specifications

Would you like to launch the Filter Design Assistant?

[Do not show this message again

You click Yes and get a new dialog box that offers to generate code. You see that the
variables you defined before have been inserted where expected.

1-318

designfilt

<\ Filter Design Assistant [= |

Lowpass FIR Design

Generate code using the designfilt function

Filter specifications

Order mode: [Speclfy -

Order: 10

Frequency specifications

Frequency constraints: [Cutoff (6dB) frequency hd

Frequency units: Hz ~ | Input sample rate: Fsamp

Cutoff (6dB) frequency: Fctff

Magnitude specifications

Magnitude constraints: |Unconstrained i
Algorithm
Design method: | Window hd

¥ Design options

[OK H Cancel][Help]

After exploring some of the options offered, you decide to test the corrected filter. You

click OK and get the following code on the command line.

dee = designfilt('lowpassfir', 'FilterOrder',6 10,
'CutoffFrequency', Fctff, 'SampleRate', Fsamp):;

Typing the name of the filter reiterates the information from the dialog box.
dee

dee =
digitalFilter with properties:

Coefficients: [1x11l double]
Specifications:
FrequencyResponse: 'lowpass'
ImpulseResponse: 'fir'
SampleRate: 2000
FilterOrder: 10
CutoffFrequency: 650
DesignMethod: 'window'
Use fvtool to visualize filter
Use filter function to filter data

You invoke fvtool and get a plot of dee’s frequency response.

1-319

1 Functions — Alphabetical List

1-320

fvtool (dee)

I Filter Visualization Tool - Figure 1: Magnitude Response (dE} =RREE X
File Edit Analysis Inset View Debug Desktop Window Help A x
DER| LD TNNN\4| & <« &0 EE B o ad)

o400 @

Figure 1; Magnitude Response (dB)

Magnitude Response (dB)
— e P e

Magnitude (dB)

i i I I I
0 100 200 300 400 500 600 700 800 900
Frequency (Hz)

The cutoff does not look particularly sharp. The response is above 40 dB for most
frequencies. You remember that the assistant had an option to set up a “magnitude
constraint” called the “stopband attenuation”. Open the assistant by calling designfilt
with the filter name as input.

designfilt (dee)

Click the Magnitude constraints drop-down menu and select Passband ripple
and stopband attenuation. You see that the design method has changed from
Window to FIR constrained least-squares. The default value for the attenuation is
60 dB, which is higher than 40. Click OK and visualize the resulting filter.

dee = designfilt('lowpassfir', 'FilterOrder', 10,
'CutoffFrequency', Fctff,
'PassbandRipple', 1, 'StopbandAttenuation', 60,
'SampleRate', Fsamp);

fvtool (dee)

designfilt

I} Filter Visualization Toal - Figure 3 Magnitude Response (B} [=[=] =]

Eile Edit Analysis Inset View Debug Desktop Window Help
DESR|K|OTNNNB &< i EE
[ET)f) B # & [T+ BB b €

| Figure L Magnitude Response (dB) | Figure 3: Magnitude Response (dB) |

¥ A x

BmmaO)

Magnitude Response (dB)

Magnitude (dB)

0 100 200 300 400 500 600 700 800 900
Frequency (Hz)

The cutoff still does not look sharp. The attenuation is indeed 60 dB, but for frequencies

above 900 Hz.

Again invoke designfilt with your filter as input.

designfilt (dee)

The assistant reappears.

1-321

1 Functions — Alphabetical List

1-322

e ™
4\ Filter Design Assistant - ‘ g

Lowpass FIR Design

Generate code using the designfilt function

Filter specifications

Order mode: [Speclfy h

Order: 10

Frequency specifications

Frequency constraints: [Cutoff (6dB) frequency -

Frequency units: Hz ~ | Input sample rate: 2000

Cutoff (6dB) frequency: 650

Magnitude specifications

Magnitude constraints: |Passband ripple and stopband attenuation -
Magnitude units: dB -

Passhand ripple: 1 Stopband attenuation: 60

Algorithm

Design method: | FIR constrained least-squares ~

» Design options

[0K][Cancel H Help J

To narrow the distinction between accepted and rejected frequencies, increase the order
of the filter or change Frequency constraints from Cutoff (6dB) frequency to
Passband and stopband frequencies. If you change the filter order from 10 to 50,
you get a sharper filter.

dee = designfilt('lowpassfir', 'FilterOrder',6 50,
'CutoffFrequency', 650,
'PassbandRipple’', 1, 'StopbandAttenuation', 60,
'SampleRate', 2000);

fvtool (dee)

designfilt

- N
] Filter isualization Toal - Figure 4: Magnitude Response (B} =

Eile Edit Analysis Inset View Debug Desktop Window Help N‘?lx
DSRE[K|OTNNNA| & <« i E B madl
[ET)f) B 2 & [T+ BB b €

| Figure 1: Magnitude Response (dB) ¢ | Figure 3: Magnitude Response (dB) 2| Figure 4 Magnitude Response (dB) 3 |

Magnitude Response (dB)
T

Magnitude (dB)

L S R R R L"""-":""""":-{:\Qmmﬂmm[
| 1 1 | | 1 | | |

0 100 200 300 400 500 600 700 800 900

Frequency (Hz)

A little experimentation shows that you can obtain a similar filter by setting the
passband and stopband frequencies respectively to 600 Hz and 700 Hz.

dee = designfilt('lowpassfir', 'PassbandFrequency', 600,
'StopbandFrequency', 700,
'PassbandRipple', 1, 'StopbandAttenuation', 60,
'SampleRate', 2000);

fvtool (dee)

1-323

1 Functions — Alphabetical List

1-324

I} Filter Visualization Toal - Figure 5: Magnitude Response (B} [S[=] =]

File Edit Analysis Inset View Debug Desktop Window Help ¥ AxX
D&R| K| OTNNN\GQ| &« a3 EE B oaO
[ET)f) B 2 & [T+ BB b €

#1 | Figure 3: Magnitude Response (dB) Figure 4 Magnitude Response Figure 5: Magnitude Response (dB)

Magnitude Response (dB)
T T T T T

Magnitude (dB)

0 100 200 300 400 500 600 700 800 900
Frequency (Hz)

You are given a signal sampled at 2 kHz. You are asked to design a highpass filter that
stops frequencies below 700 Hz. You don’t care about the phase of the signal, and you
need to work with a low-order filter. Thus an IIR filter seems adequate. You are not sure
what filter order is best, so you write a function that accepts the order as input. Open the
MATLAB Editor and create the file.

function dataOut = hipassfilt (N,dataln)

hpFilter = designfilt ('highpassiir', 'FilterOrder',N);
dataOut = filter (hpFilter,dataln);

end

To test your function, create a signal composed of two sinusoids with frequencies 500 and
800 Hz and generate samples for 0.1 s. A 5th-order filter seems reasonable as an initial
guess. Create a script called driveHPfilt .m.

% script driveHPfilt.m

Fsamp = 2e3;

Fsm = 500;

Fbg = 800;

t = 0:1/Fsamp:0.1;

sgin = sin(2*pi*Fsm*t)+sin (2*pi*Fbg*t) ;
Order = 5;

sgout = hipassfilt (Order,sgin);

designfilt

When you run the script at the command line, you get an error message.
»» driveHPFilt
Error using designfilt (line 457)

Click here)}to launch an assistant that can correct your code.
A

You have specified too few parameters for 'highpassiir'.
The following are valid parameter sets that are close to yvour inputs:
- FilterOrder, HalfPowerFrequency
- FilterOrder, PassbandFrequency, PassbandRipple
- FilterOrder, PassbandFrequency, StopbandAttenuation, PassbandRipple
- FilterOrder, StopbandFrequency, Stopbandittenuation

Error in hipassfilt (line 2}

hpFilter = designfilt('highpassiir', 'FilterOrder',N);
Errar in driveHPfilt (line 7)

sgout = hipassfilt(Order,sgin);

The error message gives you the choice of opening an assistant to correct the MATLAB
code. Click Click here to get the Filter Design Assistant on your screen.
Rt Design Psiit — |

Highpass IIR Design

Generate code using the designfilt function

Filter specifications

‘ Order: N [”] Denominator order: | 20

Frequency specifications

Frequency constraints: [Ha\f power (3dB) frequency V]

Frequency units: Normalized (0 to 1) A

Half power (3dB) frequency: 0.5

Magnitude specifications

Magnitude constraints: [Uﬂcunstramed -

Algorithm

Design method: | Butterworth v]

[OK H Cancel H Help]

& =

You see the problem: You did not specify the frequency constraint. You also forgot to set
a sample rate. After experimenting, you find that you can specify Frequency units as
Hz, Passband frequency equal to 700 Hz, and Input Fs equal to 2000 Hz. The Design

1-325

1 Functions — Alphabetical List

1-326

method changes from Butterworth to Chebyshev type I.You click OK and get the
following.

B Filter Design Assistant [= = ‘

Filter Design Assistant can correct your code at line 2 in-

hipassfilt.m
H:thipassfit.m

The current call to designfilt will be commented out

Would you like to allow this change?

The assistant has correctly identified the file where you call designfilt. Click Yes to
accept the change. The function has the corrected MATLAB code.

function dataOut = hipassfilt (N,dataln)

% hpFilter = designfilt('highpassiir', 'FilterOrder',N);

hpFilter = designfilt('highpassiir', 'FilterOrder', N,
'PassbandFrequency', 700, 'PassbandRipple', 1,
'SampleRate', 2000);

dataOut = filter (hpFilter,dataln);

end

You can now run the script with different values of the filter order. Depending on your
design constraints, you can change your specification set.

You can set designfilt to never offer the Filter Design Assistant. This action sets a
MATLAB preference that can be unset with setpref:

* Use setpref ('dontshowmeagain', 'filterDesignAssistant', false) to be
offered the assistant every time. With this command, you can get the assistant again
after having disabled it.

* Use setpref ('dontshowmeagain', 'filterDesignAssistant', true) to disable
the assistant permanently. You can also click Do not show this message again in
the initial dialog box.

You can set designfilt to always correct faulty specifications without asking. This
action sets a MATLAB preference that can be unset by using setpref:

+ Use
setpref ('dontshowmeagain', 'filterDesignAssistantCodeCorrection’', fa
1se) to have designfilt correct your MATLAB code without asking for
confirmation. You can also click Always accept in the confirmation dialog box.

designfilt

Use

setpref ('dontshowmeagain', 'filterDesignAssistantCodeCorrection’', tr
ue) to ensure that designfilt corrects your MATLAB code only when you confirm
you want the changes. With this command, you can undo the effect of having clicked
Always accept in the confirmation dialog box.

Troubleshooting

There are some instances in which, given an invalid set of specifications, designfilt
does not offer a Filter Design Assistant, either through a dialog box or through a link in
an error message.

You are not offered an assistant if you use code-section evaluation, either from the
MATLAB Toolstrip or by pressing Ctrl+Enter. (See “Divide Your File into Code
Sections” (MATLAB) for more information.)

You are not offered an assistant if your code has multiple calls to designfilt, at
least one of those calls is incorrect, and

* You paste the code on the command line and execute it by pressing Enter.

* You select the code in the Editor and execute it by pressing F9.

You are not offered an assistant if you run designfilt using an anonymous
function. (See “Anonymous Functions” (MATLAB) for more information.) For
example, this input offers an assistant.

d = designfilt ('lowpassfir', 'CutoffFrequency',0.6)
This input does not.

myFilterDesigner = Qdesignfilt;
d = myFilterDesigner ('lowpassfir', 'CutoffFrequency',0.6)

You are not offered an assistant if you run designfilt using eval. For example,
this input offers an assistant.

d = designfilt ('lowpassfir', 'CutoffFrequency',0.6)

This input does not.

myFilterDesigner = ...
sprintf('designfilt(''$s'"',''CutoffFrequency'',%f) "',

'lowpassfir',0.6);
d = eval (myFilterDesigner)

1-327

1 Functions — Alphabetical List

1-328

The Filter Design Assistant requires Java® software and the MATLAB desktop to run. It
is not supported if you run MATLAB with the -nojvm, -nodisplay, or —-nodesktop
options.

See Also

digitalFilter | double | fftfilt | filt2block | filter | filtfilt | filtord
| firtype | freqz | fvtool | grpdelay | impz | impzlength | info | isallpass
| isdouble | isfir | islinphase | ismaxphase | isminphase | issingle |
isstable | phasedelay | phasez | single | ss | stepz | tf | zerophase | zpk |
zplane

Topics

“Practical Introduction to Digital Filter Design”
“Filter Design Gallery”

“Practical Introduction to Digital Filtering”

Introduced in R2014a

designmethods

designmethods

Methods available for designing filter from specification object

Syntax

M = designmethods (D)

M = designmethods (D, 'default')
M = designmethods (D, TYPE)

M = designmethods (D, 'full')
Description

M = designmethods (D) returns the available design methods for the filter
specification object, D.

M = designmethods (D, 'default') returns the default design method for the filter
specification object D.

M = designmethods (D, TYPE) returns the TYPE design methods that apply to D. TYPE
can be either "FIR' or 'TIR'.

M = designmethods (D, 'full') returns the full name for each of the available design
methods. For example, designmethods with the ' full' argument returns
Butterworth for the butter method.

Examples

Valid Design Methods for Lowpass Filter

Construct a lowpass filter specification object and determine the valid design methods.

D = fdesign.lowpass('Fp,Fst,Ap,Ast',500,600,0.5,60,1e4);
M designmethods (D)

1-329

1 Functions — Alphabetical List

M = 8x1 cell array
{'butter'
{'chebyl'
{'cheby2'
{'ellip"
{'equiripple
{'ifir’
{'kaiserwin'

}
}
}
}
'}
}
}
{'multistage'}

See Also

design | designopts | fdesign

Introduced in R2009a

1-330

designopts

designopts

Valid input arguments and values for specification object and method

Syntax

OPTS = designopts (D, METHOD)

Description

OPTS = designopts (D, METHOD) returns a structure array with the default design
parameters used by the design method METHOD. METHOD must be one of the options
returned by designmethods.

Use help (D, METHOD) to get a description of the design parameters.

Examples

Butterworth Filter Design Options

Create a 10th-order lowpass filter with a 3-dB frequency of 0.2 rad/sample. Obtain the
default design parameters for a Butterworth design. Test whether the filter structure is a
direct-form II biquad.

D = fdesign.lowpass('N,F3dB',10,0.2);
OPTS = designopts (D, "butter')

OPTS

ructure: 'df2sos'
aleNorm: "'
SOSScaleOpts: [1x1 fdopts.sosscaling]

SystemObject: 0

if (OPTS.FilterStructure == 'df2sos')
fprintf ('The default filter structure is Direct-Form II\n');

1-331

1 Functions — Alphabetical List

fprintf ('with second-order sections.\n');
end

The default filter structure is Direct-Form II
with second-order sections.

See Also

design | designmethods | fdesign | validstructures

Introduced in R2009a

1-332

dfilt

dfilt

Discrete-time filter

Syntax

Hd =

Description

Hd =

dfilt.structure(inputl, ..

dfilt.structure(inputl,...)

.) returns a discrete-time filter, Hd, of type

structure. Each structure takes one or more inputs. If you specify a dfilt.structure
with no inputs, a default filter is created.

Note You must use a structure with dfilt.

Hd =

returns a vector containing dfilt filters.

Structures

[dfilt.structure(inputl, ...),dfilt.structure(inputl, ...),...]

Available structures for the dfilt object are shown below. The target block for the
block method depends on the filter structure. Depending on the target block, the DSP
System Toolbox software may be required.

dfilt.structure Description Coefficient Mapping Target Filter Block for
Support in realizemdl block Method
dfilt.delay Delay Not supported Delay

Requires DSP System
Toolbox

dfilt.dfl

Direct-form I

Supported

Discrete Filter

1-333

1 Functions — Alphabetical List

dfilt.structure

Description

Coefficient Mapping
Support in realizemdl

Target Filter Block for
block Method

dfilt.dflsos Direct-form I, second- Supported Discrete Filter
order sections
Requires DSP System
Toolbox
dfilt.dflt Direct-form I transposed |Supported Discrete Filter
dfilt.dfltsos |Direct-form I Supported Biquad Filter
transposed, second-order
sections Requires DSP System
Toolbox
dfilt.df2 Direct-form II Supported Discrete Filter
dfilt.df2sos Direct-form II, second- |Supported Discrete Filter
order sections
dfilt.df2t Direct-form II Supported Discrete Filter
transposed
dfilt.df2tsos |Direct-form IT Supported Biquad Filter
transposed, second-order
sections Requires DSP System
Toolbox
dfilt.dffir Direct-form FIR Supported Discrete FIR Filter
dfilt.dffirt Direct-form FIR Supported Discrete FIR Filter
transposed
dfilt.dfsymfir |Direct-form symmetric |Supported Discrete FIR Filter
FIR
dfilt.dfasymfi |Direct-form Supported Discrete FIR Filter
r antisymmetric FIR
dfilt.fftfir Overlap-add FIR Not supported Overlap-Add FFT

Filter

Requires DSP System
Toolbox

dfilt.latticea
llpass

Lattice allpass

Supported

Not supported

1-334

dfilt

dfilt.structure Description Coefficient Mapping Target Filter Block for
Support in realizemdl block Method
dfilt.latticea |Lattice autoregressive |Supported Allpole Filter
r (AR)
Requires DSP System
Toolbox
dfilt.latticea |Lattice autoregressive |Supported Not supported
rma moving- average
(ARMA)
dfilt.latticem |Lattice moving-average |Supported Not supported
amax (MA) for maximum
phase
dfilt.latticem |Lattice moving-average |Supported Discrete FIR Filter
amin (MA) for minimum
phase
dfilt.statespa |State-space Supported. Not supported
ce
dfilt.scalar Scalar gain object Supported Gain
Requires DSP System
Toolbox
dfilt.cascade |Filters arranged in Supported Target blocks depend on
series filter structures in the
series
dfilt.parallel |Filters arranged in Supported Target blocks depend on
parallel filter structures in the
parallel system

For more information on each structure, use the syntax help diflt.structure at the
MATLAB prompt or refer to its reference page.

Methods

Methods provide ways of performing functions directly on your dfilt object without
having to specify the filter parameters again. You can apply these methods directly on
the variable you assigned to your dfilt object.

1-335

1 Functions — Alphabetical List

1-336

For example, if you create a dfi1t object, Hd, you can check whether it has linear phase
with islinphase (Hd), view its frequency response plot with fvtool (Hd), or obtain its
frequency response values with h=freqgz (Hd) . You can use all of the methods below in

this way.

Note If your variable is a 1-D array of dfilt filters, the method is applied to each object
in the array. Only freqz, grpdelay, impz, is*, order, and stepz methods can be
applied to arrays. The zplane method can be applied to an array only if it is used

without outputs.

Some of the methods listed below have the same name as Signal Processing Toolbox
functions and they behave similarly. This is called overloading of functions.

Available methods are:

Method

Description

addstage

Adds a stage to a cascade or parallel object, where a
stage is a separate, modular filter. See dfilt.cascade and
dfilt.parallel.

dfilt

Method

Description

block

block (Hd) creates a Simulink filter block of the dfilt
object. The target filter block depends on the filter structure.
You must have Simulink to use this method. Additionally,
the DSP System Toolbox may be required depending on the
filter structure. See “Structures” on page 1-333 for a mapping
between the target blocks and filter structures.

The block method can specify these properties/values:

'"MapCoeffstoPorts' indicates whether to map the filter
coefficients to constant blocks connected to the generated
block. Default value is 'off'. Setting
'"MapCoeffstoPorts' to 'on' turns on the mapping and
enables the 'CoeffNames' property, which defines the
constant block parameter names. 'CoeffNames' is a cell
array of character vectors. Default values are { 'Num'} for
Direct form FIR filters, { 'K'} for lattice filters,

{"Num', 'Den"'} for IIR filters, and {Num', 'Den', 'g'} for
biquad filters. Variables, defined by 'CoeffNames', are
created in the MATLAB workspace and have the same data
type as the filter's 'Arithmetic' property. Any existing
variable with the same name is overwritten. Note that you
can use either 'Link20bj' or 'MapCoeffstoPorts', but
not both simultaneously.

'InputProcessing’ specifies sample-based,
'elementsaschannels', frame-based,
'columnsaschannels', processing, or 'inherited'. The
default is frame-based processing. If you do not have the DSP
System Toolbox software, explicitly set the
'InputProcessing' property to 'elementsaschannels'
to avoid a runtime error. Setting ' InputProcessing' to
'"inherited' targets the Digital Filter block regardless
of structure.

cascade

Returns the series combination of two dfilt objects. See
dfilt.cascade.

1-337

1 Functions — Alphabetical List

Method Description

coeffs Returns the filter coefficients in a structure containing fields
that use the same property names as those in the original
dfilt.

convert Converts a dfilt object from one filter structure to another
filter structure.

fcfwrite Writes a filter coefficient ASCII file. The file can contain a
single filter or a vector of objects. Default filename is
untitled. fcf.
fcfwrite (Hd, filename) writes to a disk file named
filename in the current working directory. The . fcf
extension is added automatically.
fcfwrite (..., fmt) writes the coefficients in the format
fmt, where fmt can be one of the following:
'hex' for hexadecimal
"dec' for decimal
'bin' for binary representation.

fftcoeffs Returns the frequency-domain coefficients used when
filtering with a dfilt.fftfir.

filter Performs filtering using the dfilt object.
y = filter (Hd, x) filters x using the Hd filter and returns
the filtered data in y. See “Using Filter States” on page 1-344
for information on using initial conditions. If x is a matrix,
each column is filtered as an independent channel. If x is a
multidimensional array, £ilter operates on the first
nonsingleton dimension.
y = filter (Hd, x,dim) operates along the dimension dim.
If x is a vector or matrix and dimis 1, every column of x is a
channel. If dim is 2, every row is a channel.

firtype Returns the type (1-4) of a linear phase FIR filter.

1-338

dfilt

Method Description

freqgz Plots the frequency response in fvtool. Note that unlike the
freqgz function, this dfilt freqz method has a default
length of 8192.

grpdelay Plots the group delay in fvtool.

impz Plots the impulse response in fvtool.

impzlength Returns the length of the impulse response.

info Displays brief dfilt information, such as filter structure,
length, stability, linear phase, and, when appropriate, lattice
and ladder length. To display detailed information about the
design method, options, etc, use info (Hd, 'long').The
default display is 'short'. For multistage filters (cascade
and parallel), use info (Hd.Stage (x)), where x is the
stage number, to see information about that stage.

isallpass Returns a logical 1 (i.e., true) if the dfilt object in an
allpass filter or a logical 0 (i.e., false) if it is not.

iscascade Returns a logical 1 if the dfilt object is cascaded or a logical
0 if 1t is not.

isfir Returns a logical 1 if the dfilt object has finite impulse
response (FIR) or a logical 0 if it does not.

islinphase Returns a logical 1 if the dfilt object is linear phase or a
logical 0 if it is not.

ismaxphase Returns a logical 1 if the dfilt object is maximum-phase or
a logical 0 if it is not.

isminphase Returns a logical 1 if the dfilt object is minimum-phase or
a logical 0 if it is not.

isparallel Returns a logical 1 if the dfilt object has parallel stages or
a logical 0 if it does not.

isreal Returns a logical 1 if the dfilt object has real-valued
coefficients or a logical 0 if it does not.

isscalar Returns a logical 1 if the dfi1t object is a scalar or a logical

0 if it is not scalar.

1-339

1 Functions — Alphabetical List

Method Description

issos Returns a logical 1 if the dfilt object has second-order
sections or a logical 0 if it does not.

isstable Returns a logical 1 if the dfi1t object is stable or a logical 0
if it are not.

nsections Returns the number of sections in a second-order sections
filter. If a multistage filter contains stages with multiple
sections, using nsections returns the total number of
sections in all the stages (a stage with a single section

returns 1).

nstages Returns the number of stages of the filter, where a stage is a
separate, modular filter.

nstates Returns the number of states for an object.

order Returns the filter order. If Hd is a single-stage filter, the

order is given by the number of delays needed for a minimum
realization of the filter. If Hd has multiple stages, the order is
given by the number of delays needed for a minimum
realization of the overall filter.

parallel Returns the parallel combination of two dfilt filters. See
dfilt.parallel.

phasez Plots the phase response in fvtool.

1-340

dfilt

Method

Description

realizemdl

(Available only with Simulink software.)

realizemdl (Hd) creates a Simulink model containing a
subsystem block realization of your dfilt.

realizemdl (Hd, pl,vl,p2,v2,...) creates the block
using the properties pl1, p2,... and values v1, v2,.. specified.

The following properties are available:

'Blockname' specifies the name of the block. The default
valueis 'Filter'.

'Destination' specifies whether to add the block to a
current Simulink model, create a new model, or place the
block in an existing subsystem in your model. Valid values
are 'current', 'new', or the name of an existing subsystem
in your model. Default value is 'current'.

'"OverwriteBlock' specifies whether to overwrite an
existing block that was created by realizemdl or create a
new block. Valid values are 'on' and 'off' and the default
is 'off'. Note that only blocks created by realizemdl are
overwritten.

The following properties optimize the block structure.
Specifying 'on' turns the optimization on and 'off' creates
the block without optimization. The default for each of the
following is 'on'.

'OptimizeZeros' removes zero-gain blocks.
P

'OptimizeOnes' replaces unity-gain blocks with a direct
connection.

'OptimizeNegOnes' replaces negative unity-gain blocks
with a sign change at the nearest summation block.

1-341

1 Functions — Alphabetical List

1-342

Method

Description

'OptimizeDelayChains' replaces cascaded chains of delay
block with a single integer delay block set to the appropriate
delay.

removestage

Removes a stage from a cascade or parallel dfilt. See
dfilt.cascade and dfilt.parallel.

setstage

Overwrites a stage of a cascade or parallel dfilt. See
dfilt.cascade and dfilt.parallel.

SOS

Converts the dfilt to a second-order sections dfilt. If HA
has a single section, the returned filter has the same class.

sos (Hd, flag) specifies the ordering of the second-order
sections. If f1ag="UP"', the first row contains the poles
closest to the origin, and the last row contains the poles
closest to the unit circle. If f1ag="down"', the sections are
ordered in the opposite direction. The zeros are always paired
with the poles closest to them.

sos (Hd, flag, scale) specifies the scaling of the gain and
the numerator coefficients of all second-order sections. scale
can be 'none', 'inf' (infinity-norm) or 'two' (2-norm).
Using infinity-norm scaling with up ordering minimizes the
probability of overflow in the realization. Using 2-norm
scaling with down ordering minimizes the peak roundoff
noise.

SS

Converts the dfilt to state-space. To see the separate
A, B, C, D matrices for the state-space model, use
[A,B,C,D]=ss (HJ).

stepz

Plots the step response in fvtool.

stepz (Hd, n) computes the first n samples of the step
response.

stepz (Hd, n, Fs) separates the time samplesby T = 1/Fs,
where Fs 1s assumed to be in Hz.

dfilt

Method Description

sysobj Converts the dfilt to a filter System object. See the
reference page for a list of supported objects. To use this
method, you must have DSP System Toolbox software

installed.
tf Converts the dfilt to a transfer function.
zerophase Plots the zero-phase response in fvtool.
zpk Converts the dfilt to zeros-pole-gain form.
zplane Plots a pole-zero plot in fvtool.

For more information on each method, use the syntax help diflt/method at the
MATLAB prompt.

Viewing Properties

As with any object, you can use get to view a dfilt properties. To see a specific
property, use

get (Hd, '"property')
To see all properties for an object, use

get (Hd)

Changing Properties
To set specific properties, use

set (Hd, 'propertyl',value, 'property2',value,...)
Note that you must use single quotation marks around the property name.

Alternatively, you can get or set a property value with Object.property:

b = [0.05 0.9 0.05];
Hd = dfilt.dffir (b);

)

% Lowpass direct-form I FIR filter
Hd.arithmetic % get arithmetic property

)

% returns double

1-343

1 Functions — Alphabetical List

1-344

Hd.arithmetic = 'single';
% Set arithmetic property to single precision

Copying an Object
To create a copy of an object, use the copy method.

H2 = copy (Hd)

Note Using the syntax H2 = Hd copies only the object handle and does not create a new
object.

Converting Between Filter Structures

To change the filter structure of a dfilt object Hd, use

Hd2=convert (Hd, 'structure name');

where structure name is any valid structure name in single quotes. If Hd is a cascade
or parallel structure, each of its stages is converted to the new structure.

Using Filter States

Two properties control the filter states:

* states — stores the current states of the filter. Before the filter is applied, the states
correspond to the initial conditions and after the filter is applied, the states
correspond to the final conditions. For df1, dfl1t, dfl1sos and dfltsos structures,
states returns a filtstate object.

* PersistentMemory — controls whether filter states are saved. The default value is
'false', which causes the initial conditions to be reset to zero before filtering and
turns off the display of states information. Setting PersistentMemory to 'true'
allows the filter to use your initial conditions or to reuse the final conditions of a
previous filtering operation as the initial conditions of the next filtering operation. It
also displays information about the filter states.

Note If you set states and want to use them for filtering, you must set
PersistentMemory to 'true' before you use the filter.

dfilt

Examples

Create a direct-form I filter and use a method to see if it is stable.

[b,a]

= butter(8,0.25);

Hd = dfilt.dfl(b,a)

If a dfi1t's numerator values do not fit on a single line, a description of the vector is
displayed. To see the specific numerator values for this example, use

get (Hd, 'numerator')

or alternatively

Hd.numerator

Refer to the reference pages for each structure for more examples.

See Also

dfilt.cascade | dfilt.dfl | dfilt.dflt | dfilt.df2 | dfilt.df2t |
dfilt.dfasymfir | dfilt.dffir | dfilt.dffirt | dfilt.dfsymfir |
dfilt.latticeallpass | dfilt.latticear | dfilt.latticearma |
dfilt.latticemamax | dfilt.latticemamin | dfilt.parallel |
dfilt.statespace | filter | freqz | grpdelay | impz | step | tf | zpk |
zplane

Introduced before R2006a

1-345

1 Functions — Alphabetical List

dfilt.cascade

Cascade of discrete-time filters

Syntax

Hd = dfilt.cascade (Hd1l,Hd2,...)

Description

Hd = dfilt.cascade (Hd1l,Hd2, ...) returns a discrete-time filter, Hd, of type
cascade, which is a serial interconnection of two or more dfilt filters, Hdl, Hd2, etc.
Each filter in a cascade is a separate stage.

To add a filter (Hd1) to the end of an existing cascade (Hd), use
addstage (Hd, Hd1)

and to reorder the filters in a cascade, use the stage indices to indicate the desired
ordering, such as.

Hd.stage = Hd.stage([1,3,2]);

You can also use the nondot notation format for calling a cascade:

cascade (Hd1,Hd2, ...)

}{[z]_h:.. Hdi(z) | — melHd2(z) |— e ... — ym¥(z)

Examples

Cascade a lowpass filter and a highpass filter to produce a bandpass filter:

1-346

dfilt.cascade

[bl,al]l=butter(8,0.06); % Lowpass
[b2,a2]=butter(8,0.4, 'high'); % Highpass
Hl=dfilt.df2t (bl,al);

H2=dfilt.df2t (b2,a2);

Hcas=dfilt.cascade (H1,H2) % Bandpass-passband

To view details of the first stage, use

info (Hcas.Stage (1))

To view the states of a stage, use

Hcas.stage(l) .states

You can display states for individual stages only.

See Also

dfilt | dfilt.parallel | dfilt.scalar

Introduced before R2006a

A

1-347

1 Functions — Alphabetical List

1-348

dfilt.delay

Delay filter

Syntax

Hd = dfilt.delay
Hd dfilt.delay(latency)

Description

Hd = dfilt.delay returns a discrete-time filter, Hd, of type delay, which adds a single
delay to any signal filtered with Hd. The filtered signal has its values shifted by one
sample.

Hd = dfilt.delay(latency) returns a discrete-time filter, Hd, of type delay, which
adds the number of delay units specified in 1atency to any signal filtered with Hd. The
filtered signal has its values shifted by the 1atency number of samples. The values that
appear before the shifted signal are the filter states.

Examples

Create a delay filter with a 1atency of 4 and filter a simple signal to view the impact of
applying a delay.

h = dfilt.delay(4)
h =

FilterStructure: 'Delay'

Latency: 4
PersistentMemory: false

sig = 1:7 % Create some simple signal data
sig =

1 2 3 4 5 6 7

states = h.states % Filter states before filtering

dfilt.delay

states =

o O O O

filter(h,sig) % Filter using the delay filter
ans =
0 0 0 0 1 2 3

)

states=h.states % Filter states after filtering
states =
4

5
6
7

See Also
dfilt

Introduced before R2006a

1-349

1 Functions — Alphabetical List

1-350

dfilt.df1

Discrete-time, direct-form I filter

Syntax

Hd = dfilt.dfl (b, a)
Hd dfilt.dfl

Description

Hd = dfilt.dfl (b, a) returns a discrete-time, direct-form I filter, Hd, with numerator
coefficients b and denominator coefficients a. The filter states for this object are stored in
a filtstates object.

Hd = dfilt.dfl returns a default, discrete-time, direct-form I filter, Hd, with b=1 and
a=1. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a (1) cannot be 0.

dfilt.df1

df1
(Direct-form 1)

- w
Iy ¥
k.

1
= Jeatny
z

*

= b(1)

za @)

= (2)

za (n)

1

() = — ai3) ‘J.
v

¥

1

‘_I

%
b(nkb)

Image of direct form one filter diagram

2b ()

l—Nl—‘d—« <—--I>NI—\ ot

To display the filter states, use this code to access the filtstates object.

oe

Where Hd is the dfilt.dfl object and
Hs is the filtstates object

Hs = Hd.states
double (Hs)

oe

The vector is
o)

zb(2)

zb(n)

za(l)

za(2)

| za(n) |

1-351

1 Functions — Alphabetical List

Examples

Create a direct-form I discrete-time filter with coefficients from a fourth-order lowpass
Butterworth design

[b,a] = butter(4,.5);
Hd = dfilt.dfl(b,a)

See Also
dfiltl dfilt.dfltl dfilt.df2 Idfilt.df2t

Introduced before R2006a

1-352

dfilt.df1sos

dfilt.df1sos

Discrete-time, second-order section, direct-form I filter

Syntax

Hd = dfilt.dflsos(s)

Hd dfilt.dflsos(bl,al,b2,a2,...)
Hd dfilt.dflsos(...,Qq)

Hd = dfilt.dflsos

Description

Hd = dfilt.dflsos (s) returns a discrete-time, second-order section, direct-form I
filter, Hd, with coefficients given in the s matrix. The filter states for this object are
stored in a filtstates object.

Hd = dfilt.dflsos(bl,al,b2,a2,...) returns a discrete-time, second-order
section, direct-form I filter, Hd, with coefficients for the first section given in the b1l and
al vectors, for the second section given in the b2 and a2 vectors, etc.

Hd = dfilt.dflsos(...,qg) includes a gain vector g. The elements of g are the gains
for each section. The maximum length of g is the number of sections plus one. If g is not
specified, all gains default to one.

Hd = dfilt.dflsos returns a default, discrete-time, second-order section, direct-form I
filter, Hd. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a (1) cannot be 0.

1-353

1 Functions — Alphabetical List

df1sos
(Direct-form I, second-order sections)

o>

Input
ey ElO

k.
zb1(1)E

to Section 2

b12) aliz)

b
¥
[

)| 51 i

b2 a1

from Section 1

to Section 3
s201)

k.
zb2(1)E

b

14 aze1)

b2(2) az(z)

-
N_.\‘

L
8

zbz) 51

b203) az(z

To display the filter states, use this code to access the filtstates object.

Hs = Hd.states % Where Hd is the dfilt.dfl object and
double (Hs) % Hs is the filtstates object

The vector is
zbl(1) 2zb2(1)
zbl(2) 2zb2(2)
zal(l) za2(1)
zal(2) za2(2)

1-354

dfilt.df1sos

For filters with more than one section, each section is a separate column in the matrix.

Examples

Specify a second-order sections, direct-form I discrete-time filter with coefficients from a
sixth order, lowpass, elliptical filter using the following code. The resulting filter has
three sections.

[z,p, k] = ellip(6,1,60,.4); % Obtain filter coefficients
[s,g9] = zp2sos(z,p,k); Convert to SOS
Hd = dfilt.dflsos (s, q)

oe

See Also
dfilt | dfilt.dfltsos | dfilt.df2sos | dfilt.df2tsos

Introduced before R2006a

1-355

1 Functions — Alphabetical List

1-356

dfilt.df1t

Discrete-time, direct-form I transposed filter

Syntax

Hd = dfilt.dflt (b, a)
Hd dfilt.dflt

Description

Hd = dfilt.dflt (b, a) returns a discrete-time, direct-form I transposed filter, Hd,
with numerator coefficients b and denominator coefficients a. The filter states for this
object are stored in a filtstates object.

Hd = dfilt.dflt returns a default, discrete-time, direct-form I transposed filter, Hd,
with b=1 and a=1. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a (1) cannot be 0.

dfilt.df1t

df1t
(Transposed Direct-form |)

e« »{b(1) £
x Y

1/al1)

za (1) ; = b e

alZ) e— +—w hi2)

za(2) = bi2)

1
al3) — L—w b3 J

£

To display the filter states, use this code to access the filtstates object.

Hs = Hd.states % Where Hd is the dfilt.dfl object and
double (Hs) Hs is the filtstates object

oe

The vector of states is:
zb(1)
zb(2)

zb(M)
za(l)
za(2)

za(N)

Alternatively, you can access the states in the filtstates object:

b = [0.05 0.9 0.05];

Hd = dfilt.dflt(b,1);
Hd.States

% Returns

% Numerator: [2x1 double]

1-357

1 Functions — Alphabetical List

)

% Denominator: [0x1l double]
Hd.States.Numerator (1l)=1; %Set zb(l) equal to 1.

Examples

Create a direct-form I transposed discrete-time filter with coefficients from a fourth-order
lowpass Butterworth design:

[b,a] = butter(4,.5);
Hd = dfilt.dflt (b, a)

See Also
dfilt | dfilt.dfl | dfilt.df2 | dfilt.df2t

Introduced before R2006a

1-358

dfilt.df1tsos

dfilt.df1tsos

Discrete-time, second-order section, direct-form I transposed filter

Syntax

Hd = dfilt.dfltsos (s)

Hd dfilt.dfltsos(bl,al,b2,a2,...)
Hd dfilt.dfltsos(...,Q9)

Hd = dfilt.dfltsos

Description

Hd = dfilt.dfltsos (s) returns a discrete-time, second-order section, direct-form I,
transposed filter, Hd, with coefficients given in the s matrix. The filter states for this
object are stored in a filtstates object.

Hd = dfilt.dfltsos(bl,al,b2,a2,...) returns a discrete-time, second-order
section, direct-form I, tranposed filter, Hd, with coefficients for the first section given in
the b1l and al vectors, for the second section given in the b2 and a2 vectors, etc.

Hd = dfilt.dfltsos(...,qg) includes a gain vector g. The elements of g are the gains
for each section. The maximum length of g is the number of sections plus one. If g is not
specified, all gains default to one.

Hd = dfilt.dfltsos returns a default, discrete-time, second-order section, direct-form
I, transposed filter, Hd. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a (1) cannot be 0.

1-359

1 Functions — Alphabetical List

dfitsos
(Transposed Direct-form |, second-order sections)

<] e

bi1,1)

zazty| 2!

a3 1) bz, 1) Elichy] biZ.2)

To display the filter states, use this code to access the filtstates object.

Hs = Hd.states % Where Hd is the dfilt.dfl object and
double (Hs) % Hs is the filtstates object

The matrix is
zbl(1) =zb2(1)
zbl(2) 2zb2(2)
zal(l) za2(1)
zal(2) za2(2)

Examples

Specify a second-order sections, direct-form I, transposed discrete-time filter with
coefficients from a sixth order, lowpass, elliptical filter using the following code:

[z,p, k] = ellip(6,1,60,.4); % Obtain filter coefficients
[s,g9] = zpZsos(z,p,k); % Convert to SOS
Hd = dfilt.dfltsos(s,q)

1-360

dfilt.df1tsos

See Also
dfilt | dfilt.dflsos | dfilt.df2sos | dfilt.df2tsos

Introduced before R2006a

1-361

1 Functions — Alphabetical List

dfilt.df2

Discrete-time, direct-form II filter

Syntax

Hd = dfilt.df2 (b, a)
Hd dfilt.df2

Description

Hd = dfilt.df2 (b, a) returns a discrete-time, direct-form II filter, Hd, with numerator
coefficients b and denominator coefficients a.

Hd = dfilt.df2 returns a default, discrete-time, direct-form II filter, Hd, with b=1 and
a=1. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a (1) cannot be 0.

1-362

dfilt.df2

df2
(Direct-form Il)

The resulting filter states column vector is
z(1)
A2)

z(n)

Examples

Create a direct-form II discrete-time filter with coefficients from a fourth-order lowpass
Butterworth design:

[b,a] = butter(4,.5);
Hd = dfilt.df2(b,a)

1-363

1 Functions — Alphabetical List

See Also
dfilt | dfilt.dfl | dfilt.dflt | dfilt.df2t

Introduced before R2006a

1-364

dfilt.df2sos

dfilt.df2sos

Discrete-time, second-order section, direct-form II filter

Syntax

Hd = dfilt.df2sos(s)

Hd dfilt.df2sos (bl,al,b2,a2,...)
Hd dfilt.df2sos(...,Qq)

Hd = dfilt.df2sos

Description

Hd = dfilt.df2sos (s) returns a discrete-time, second-order section, direct-form II
filter, Hd, with coefficients given in the s matrix.

Hd = dfilt.df2sos(bl,al,b2,a2,...) returns a discrete-time, second-order
section, direct-form II object, Hd, with coefficients for the first section given in the b1l and
al vectors, for the second section given in the b2 and a2 vectors, etc.

Hd = dfilt.df2sos(...,qg) includes a gain vector g. The elements of g are the gains
for each section. The maximum length of g is the number of sections plus one. If g is not
specified, all gains default to one.

Hd = dfilt.df2sos returns a default, discrete-time, second-order section, direct-form
II filter, Hd. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a (1) cannot be 0.

1-365

1 Functions — Alphabetical List

df2sos
(Direct-form Il, second-order sections)

to Section 2

s o

from Section 2

i to Section 3

The resulting filter states column vector is
z1(1) =z2(1)
21(2) 22(2)

For filters with more than one section, each section is a separate column in the vector.

Examples

Specify a second-order sections, direct-form II discrete-time filter with coefficients from a
sixth order, lowpass, elliptical filter using the following code:

1-366

dfilt.df2sos

[z,p, k] = ellip(6,1,60,.4); % Obtain filter coefficients
[s,g] = zp2sos(z,p,k); % Convert to SOS
Hd = dfilt.df2sos (s, q)

See Also
dfilt | dfilt.dflsos | dfilt.dfltsos | dfilt.df2tsos

Introduced before R2006a

1-367

1 Functions — Alphabetical List

dfilt.df2t

Discrete-time, direct-form II transposed filter

Syntax

Hd = dfilt.df2t (b, a)
Hd dfilt.df2t

Description

Hd = dfilt.df2t (b, a) returns a discrete-time, direct-form II transposed filter, Hd,
with numerator coefficients b and denominator coefficients a.

Hd = dfilt.df2t returns a default, discrete-time, direct-form II transposed filter, Hd,
with b=1 and a=1. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a (1) cannot be 0.

1-368

dfilt.df2t

df2t
(Transposed Direct-form Il)

et e

1/a(l1)

= [

- [z

2>

@

9>

The filter states of dfil1t.df2t object can be extracted as a column vector with:

b =[1 2];
a =[1 -0.9];
Hd = dfilt.df2t(b,a);

FiltStates = double (Hd.States);

The resulting filter states column vector is
z(1)
22)

Examples

Create a direct-form II transposed discrete-time filter with coefficients from a 4—th order
lowpass Butterworth design:

[b,a] = butter(4,.5);
Hd = dfilt.df2t(b,a);

1-369

1 Functions — Alphabetical List

See Also
dfilt | dfilt.dfl | dfilt.dflt | dfilt.df2

Introduced before R2006a

1-370

dfilt.df2tsos

dfilt.df2tsos

Discrete-time, second-order section, direct-form II transposed filter

Syntax

Hd = dfilt.df2tsos (s)

Hd dfilt.df2tsos(bl,al,b2,a2,...)
Hd dfilt.df2tsos(...,Q9)

Hd = dfilt.df2tsos

Description

Hd = dfilt.df2tsos (s) returns a discrete-time, second-order section, direct-form II,
transposed filter, Hd, with coefficients given in the s matrix.

Hd = dfilt.df2tsos(bl,al,b2,a2,...) returns a discrete-time, second-order
section, direct-form II, transposed filter, Hd, with coefficients for the first section given in
the b1l and al vectors, for the second section given in the b2 and a2 vectors, etc.

Hd = dfilt.df2tsos(...,qg) includes a gain vector g. The elements of g are the gains
for each section. The maximum length of g is the number of sections plus one. If g is not
specified, all gains default to one.

Hd = dfilt.df2tsos returns a default, discrete-time, second-order section, direct-form
II, transposed filter, Hd. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a (1) cannot be 0.

1-371

1 Functions — Alphabetical List

1-372

df2tsos
(Transposed Direct-form Il, second-order sections)

The resulting filter states column vector is
21D z2(1)
z1(2) 22(2)

Examples

Elliptic Filter as Second-Order Sections

Design a second-order sections, direct-form II, transposed discrete-time filter starting

from a 6th-order lowpass elliptic filter. Specify a passband edge frequency of 047 paq/
sample, a passband ripple of 1 dB, and a stopband attenuation of 60 dB. Visualize the
filter response.

[z,p, k] = ellip(6,1,60,0.4); % Obtain filter coefficients
[s,g] = zp2sos(z,p,k); % Convert to SOS

Hd = dfilt.df2tsos(s,q);

fvtool (HA)

dfilt.df2tsos

Magnitude Response (dB)
D e e -'-"""—-""‘ll i
III
10 I|I 7
20 \
€30t
Juk} |
= II
= 40 \
= |
@ \
= 50 '||
II
60 | («.\ — 1
|| \ / \\ /
-0 r | 7
v I| |II \ [
—ED i i i i || i i L |II i
0 01 02 03 04 05 06 07 08 09
Mormalized Frequency (=« rad/sample)
See Also

dfilt | dfilt.dflsos | dfilt.dfltsos | dfilt.df2sos
Introduced before R2006a

1-373

1 Functions — Alphabetical List

dfilt.dfasymfir

Discrete-time, direct-form antisymmetric FIR filter

Syntax

Hd = dfilt.dfasymfir (b)
Hd dfilt.dfasymfir

Description

Hd = dfilt.dfasymfir (b) returns a discrete-time, direct-form, antisymmetric FIR
filter, Hd, with numerator coefficients b.

Hd = dfilt.dfasymfir returns a default, discrete-time, direct-form, antisymmetric
FIR filter, Hd, with b=1. This filter passes the input through to the output unchanged.

Note Only the first half of vector b is used because the second half is assumed to be
antisymmetric. In the figure below for an odd number of coefficients, b (3) =0, b (4) =—
b(2) and b (5) =-b (1), and in the next figure for an even number of coefficients,

b(4) =-Db(3),b(5) =-Db(2),andb(6) =—Db(1).

1-374

dfilt.dfasymfir

dfasymfir
(Antisymmetric FIR)
Even order
Odd number of coefficients, length(b) =7

o
Mo
n

]
I P

P
L

b3

1 iy —

Note that antisymmetry is defined as
b{i) == -b{end -1 + 1)
so that the middle coefficient is zero for odd length
b{{end+1){2) = 0

1-375

1 Functions — Alphabetical List

dfasymfir
(Antisymmetric FIR)
Even number of coefficients, length(b) = 6

= ()

8
M|
o M|

b3

P
L

b{i) == -b{end -1 + 1)

The resulting filter states column vector for the odd number of coefficients example above

is
[2(1)]
2(2)
z(3)
z(4)
z(5)
|2(6) |

1-376

dfilt.dfasymfir

Amplitude

Examples

Odd-Order Antysimmetric FIR Filter Structure

Create a Type-4 25th-order highpass direct-form antisymmetric FIR filter structure for a
dfilt object.

Num coeffs = firpm(25,[0 .4 .5 1],[0 0 1 1],'h");
Hd = dfilt.dfasymfir(Num_coeffs);

Display the impulse response of the filter.

impz (HJ)

0.5 ® :

Impulse Response

0.4 7

0.3 7

0.5 I I I I]

0 5 10 15 20 25
Samples

1-377

1 Functions — Alphabetical List

Even-Order Antisymmetric FIR Filter Structure
Create a 44th-order lowpass direct-form antisymmetric FIR differentiator filter structure

for a dfilt object.

Num coeffs = firpm(44,([0 .3 .4 1],[0 .2 0 0], 'differentiator');

Hd = dfilt.dfasymfir (Num coeffs);

Display the impulse response of the filter.

impz (Hd)
Impulse Response
D. D4 T T T T T T T T
®
0.03 . 7
0.02 7

Amplitude
E

—e

*4

-
—

J

.—
[

[]

'_
e

_.

™
.?E

0.011
0.02 .
[
0.031 7
.
_Dm i i i i i i i i
0 5 10 15 20 25 30 35 40
Samples

1-378

dfilt.dfasymfir

See Also

dfilt | dfilt.dffir | dfilt.dffirt | dfilt.dfsymfir

Introduced before R2006a

1-379

1 Functions — Alphabetical List

dfilt.dffir

Discrete-time, direct-form, FIR filter

Syntax

Hd = dfilt.dffir (b)
Hd dfilt.dffir

Description

Hd = dfilt.dffir (b) returns a discrete-time, direct-form finite impulse response
(FIR) filter, Hd, with numerator coefficients, b.

Hd = dfilt.dffir returns a default, discrete-time, direct-form FIR filter, Hd, with

b=1. This filter passes the input through to the output unchanged.
dffir
(Direct-form FIR = Tapped delay line)

- s
S "

Output

The resulting filter states column vector is

1-380

dfilt.dffir

z(1)
22)

Examples

Create a direct-form FIR discrete-time filter with coefficients from a 30t order lowpass
equiripple design:

b = firpm(30, [0 .1 .2 .5]1*2,[1 1 0 0]);
Hd = dfilt.dffir (b)

See Also

dfilt | dfilt.dfasymfir | dfilt.dffirt | dfilt.dfsymfir

Introduced before R2006a

1-381

1 Functions — Alphabetical List

dfilt.dffirt

Discrete-time, direct-form FIR transposed filter

Syntax

Hd = dfilt.dffirt (b)
Hd dfilt.dffirt

Description

Hd = dfilt.dffirt (b) returns a discrete-time, direct-form FIR transposed filter, Hd,
with numerator coefficients b.

Hd = dfilt.dffirt returns a default, discrete-time, direct-form FIR transposed filter,
Hd, with b=1. This filter passes the input through to the output unchanged.
dffirt
(Transposed Direct-form FIR)

PSP

- [

¥

b2

¥

1
h{3) J

The resulting filter states column vector is
z(1)
22)

1-382

dfilt.dffirt

Examples

Create a direct-form FIR transposed discrete-time filter with coefficients from a 30t
order lowpass equiripple design:

b = firpm(30,[0 .1 .2 .51*2,[1 1 0 01);
Hd = dfilt.dffirt (b)

See Also

dfilt | dfilt.dfasymfir | dfilt.dffir | dfilt.dfsymfir

Introduced before R2006a

1-383

1 Functions — Alphabetical List

1-384

dfilt.dfsymfir

Discrete-time, direct-form symmetric FIR filter

Syntax

Hd = dfilt.dfsymfir (b)
Hd dfilt.dfsymfir

Description

Hd = dfilt.dfsymfir (b) returns a discrete-time, direct-form symmetric FIR filter,
Hd, with numerator coefficients b.

Hd = dfilt.dfsymfir returns a default, discrete-time, direct-form symmetric FIR
filter, Hd, with b=1. This filter passes the input through to the output unchanged.

Note Only the first half of vector b is used because the second half is assumed to be
symmetric. In the figure below for an odd number of coefficients, b (3) =0,b (4) =b (2)
and b (5) =b (1), and in the next figure for an even number of coefficients, b (4) =b (3),
b(5) =b(2),and b (6) =b(1).

dfilt.dfsymfir

dfsymfir
(Symmetric FIR)
Even order
Odd number of coefficients, length(b) = 5
b(i)==b(end -i+ 1)

D > -+
Input \"‘-/ |
an| ! R e

¥
2(2) E] Q{‘ "

Output

1-385

1 Functions — Alphabetical List

dfsymfir
(Symmetric FIR)
Odd order
Even number of coefficients, length(b) = 6
b(i) == b(end -i +1)

"
%

[T —

= ()

Punie

M|

z (1

-
L

"

M|

2 (5

.
]
B

L

b3

P
L

h

1
z
z(3)

The resulting filter states column vector for the odd number of coefficients example above
is

z(1)
2(2)
z(3)
z(4)

1-386

dfilt.dfsymfir

Amplitude

Examples

Odd-Order Symmetric FIR Filter Structure
Create a Type-2 15th-order direct-form symmetric FIR filter structure for a dfilt object.

Num coeffs = firl(15,0.5);
Hd = dfilt.dfsymfir (Num coeffs);

Display the impulse response of the filter.
impz (Hd)

Impulse Response

0.45 T * @ 7

041 7

0.35 7

0.25 7

(=
P
T

i

=

=

o
T
I

0.051 7

-0.05 [

Samples

1-387

1 Functions — Alphabetical List

Even-Order Symmetric FIR Filter Structure
Create a Type-1 16th-order direct-form symmetric FIR filter structure for a dfi1t object.

Num coeffs = firl(16,0.5);
Hd = dfilt.dfsymfir (Num coeffs);

Display the impulse response of the filter.

impz (Hd)
Impulse Response
0.5 L .
0.4 r 7
0.3 * * :
[uk]
]
=
a 02 7
=
<T
0.1 r 7
D1k 1 1 1 i 1 1 i -
0 2 4 6 8 10 12 14 16
Samples

1-388

dfilt.dfsymfir

See Also
dfilt | dfilt.dfasymfir | dfilt.dffir | dfilt.dffirt

Introduced before R2006a

1-389

1 Functions — Alphabetical List

1-390

dfilt.fftfir

Discrete-time, overlap-add, FIR filter

Syntax

Hd = dfilt.fftfir (b, len)
Hd dfilt.fftfir (b)
Hd = dfilt.fftfir

Description

This object uses the overlap-add method of block FIR filtering, which is very efficient for
streaming data.

Hd = dfilt.fftfir (b, len) returns a discrete-time, FFT, FIR filter, Hd, with
numerator coefficients, b and block length, 1en. The block length is the number of input
points to use for each overlap-add computation.

Hd = dfilt.fftfir (b) returns a discrete-time, FFT, FIR filter, Hd, with numerator
coefficients, b and block length, 1en=100.

Hd = dfilt.fftfir returns a default, discrete-time, FFT, FIR filter, Hd, with the
numerator b=1 and block length, 1en=100. This filter passes the input through to the
output unchanged.

Note When you use a dfilt.fftfir object to filter data, the filter always operates on a
segment of the signal equal in length to an integer multiple of the object's block length,
len. If the input signal length is not equal to an integer multiple of the block length, the
signal length is truncated to the nearest integer satisfying this requirement. If the
PersistentMemory property is set to true, the next time you use the filter object the
remaining signal samples are prepended to the subsequent input. The resulting number
of FFT points = (filter length + the block length - 1). The filter is most efficient if the
number of FFT points is a power of 2.

dfilt.fftfir

The fftfir uses an overlap-add block processing algorithm, which is represented as

follows,
I I | I
— len —w——len — i len — @
I I I

|
|
®= : block X, block x block x,,
: | | |
| | | |
| | | |
| | .
| | t.all : :
o ro |
¥ = len | M I tail |
T | tail
! ¥, = len I M [
: : ¥y = len M
: | . l
n={) n=len n=2"0en n=3*len

where len is the block length and M is the length of the numerator-1, (length (b) -1),
which is also the number of states. The output of each convolution is a block that is
longer than the input block by a tail of (Length (b) -1) samples. These tails overlap the
next block and are added to it. The states reported by dfilt.fftfir are the tails of the
final convolution.

Examples

Create an FFT FIR discrete-time filter with coefficients from a 30t order lowpass
equiripple design:

b = firpm(30,[0 .1 .2 .5]1*2,[1 1 0 01);
Hd = dfilt.fftfir (b)

To view the frequency domain coefficients used in the filtering, use the following
command.

freq coeffs = fftcoeffs(Hd);

1-391

1 Functions — Alphabetical List

See Also
dfilt | dfilt.dfasymfir | dfilt.dffir | dfilt.dffirt | dfilt.dfsymfir

Introduced before R2006a

1-392

dfilt.latticeallpass

dfilt.latticeallpass

Discrete-time, lattice allpass filter

Syntax

Hd = dfilt.latticeallpass (k)
Hd dfilt.latticeallpass

Description

Hd = dfilt.latticeallpass (k) returns a discrete-time, lattice allpass filter, Hd,
with lattice coefficients, k.

Hd = dfilt.latticeallpass returns a default, discrete-time, lattice allpass filter, Hd,
with k=[]. This filter passes the input through to the output unchanged.
latticeallpass
(Lattice Allpass)

O —)

ki(2) k(1)

f

H
R
H

Output

The resulting filter states column vector Hd.States is
z(1)
22)

1-393

1 Functions — Alphabetical List

Examples

Form a third-order lattice allpass filter structure for a dfilt object, Hd, using the
following lattice coefficients:

k = [.606 .7 .44];
Hd = dfilt.latticeallpass (k)

See Also
dfilt | dfilt.latticear | dfilt.latticearma | dfilt.latticemamax
dfilt.latticemamin

Introduced before R2006a

1-394

dfilt.1atticear

dfilt.latticear

Discrete-time, lattice, autoregressive filter

Syntax

Hd = dfilt.latticear (k)
Hd dfilt.latticear

Description

Hd = dfilt.latticear (k) returns a discrete-time, lattice autoregressive filter, Hd,
with lattice coefficients, k.

Hd = dfilt.latticear returns a default, discrete-time, lattice autoregressive filter,
Hd, with k=[]. This filter passes the input through to the output unchanged.
latticear
(Autoregressive Lattice)

+ =/i\ =m w1
¥

ki(2) |

conj k{24

M=
N

HERE
N

z

The resulting filter states column vector is
z(1)
2(2)
z(3)

1-395

1 Functions — Alphabetical List

Examples

Form a third-order lattice autoregressive filter structure for a dfilt object, Hd, using the
following lattice coefficients:

k = [.66 .7 .44];
Hd = dfilt.latticear (k)

See Also
dfilt | dfilt.latticeallpass | dfilt.latticearma | dfilt.latticemamax
dfilt.latticemamin

Introduced before R2006a

1-396

dfilt.latticearma

dfilt.latticearma

Discrete-time, lattice, autoregressive, moving-average filter

Syntax

Hd = dfilt.latticearma (k,Vv)
Hd dfilt.latticearma

Description

Hd = dfilt.latticearma (k,v) returns a discrete-time, lattice autoregressive,
moving-average filter, Hd, with lattice coefficients, k and ladder coefficients v.

Hd = dfilt.latticearma returns a default, discrete-time, lattice autoregressive,
moving-average filter, Hd, with k=[] and v=1. This filter passes the input through to the
output unchanged.

latticearma
(Autogressive Moving-Average Lattice)

The resulting filter states column vector is

1-397

1 Functions — Alphabetical List

2(1)
2(2)
2(3)

Examples

Form a third-order lattice autoregressive, moving-average filter structure for a dfilt
object, Hd, using the following lattice coefficients:

k = [.66 .7 .447;
Hd = dfilt.latticearma (k)

See Also
dfilt | dfilt.latticeallpass | dfilt.latticear | dfilt.latticemamax
dfilt.latticemamin

Introduced before R2006a

1-398

dfilt.latticemamax

dfilt.latticemamax

Discrete-time, lattice, moving-average filter

Syntax

Hd = dfilt.latticemamax (k)
Hd dfilt.latticemamax

Description

Hd = dfilt.latticemamax (k) returns a discrete-time, lattice, moving-average filter,
Hd, with lattice coefficients k.

Note If the k coefficients define a maximum phase filter, the resulting filter in this
structure is maximum phase. If your coefficients do not define a maximum phase filter,
placing them in this structure does not produce a maximum phase filter.

Hd = dfilt.latticemamax returns a default discrete-time, lattice, moving-average
filter, Hd, with k=[]. This filter passes the input through to the output unchanged.

1-399

1 Functions — Alphabetical List

latticemamax
(Moving-Average, Maximum Phase Lattice)

@

1-400

ol ol
. >
+ +

e k(2

W conJiki{1)) onjk(2))
1 1 ¥ 1
.. — —_ = _
z z z
zi1) Z(Z) (3

The resulting filter states column vector is
z(1)
2(2)
z(3)

Examples

Form a fourth-order lattice, moving-average, maximum phase filter structure for a
dfilt object, Hd, using the following lattice coefficients:

k = [.66 .7 .44 .33];
Hd = dfilt.latticemamax (k)

See Also

dfilt | dfilt.latticeallpass | dfilt.latticear | dfilt.latticearma
dfilt.latticemamin

Introduced before R2006a

dfilt.latticemamin

dfilt.latticemamin

Discrete-time, lattice, moving-average filter

Syntax

Hd = dfilt.latticemamin (k)
Hd dfilt.latticemamin

Description

Hd = dfilt.latticemamin (k) returns a discrete-time, lattice, moving-average,
minimum phase, filter, Hd, with lattice coefficients k.

Note If the k coefficients define a minimum phase filter, the resulting filter in this
structure is minimum phase. If your coefficients do not define a minimum phase filter,
placing them in this structure does not produce a minimum phase filter.

Hd = dfilt.latticemamin returns a default discrete-time, lattice, moving-average,
minimum phase, filter, Hd, with k=[]. This filter passes the input through to the output
unchanged.

1401

1 Functions — Alphabetical List

latticemamin
(Moving-Average, Minimum Phase Lattice)

@

1-402

»{) ' wr
+ +

e k(2

W conJiki{1)) onjk(2))
1 1 ¥ 1
.. — —_ = _ —
z z z
zi1) z(Z) (3

The resulting filter states column vector is
z(1)
2(2)
z(3)

Examples

Form a third-order lattice, moving-average, minimum phase, filter structure for a dfilt
object, Hd, using the following lattice coefficients.

k = [.66 .7 .447;
Hd = dfilt.latticemamin (k)

See Also

dfilt | dfilt.latticeallpass | dfilt.latticear | dfilt.latticearma
dfilt.latticemamax

Introduced before R2006a

dfilt.parallel

dfilt.parallel

Discrete-time, parallel structure filter

Syntax

Hd = dfilt.parallel (Hd1l,Hd2,...)

Description

Hd = dfilt.parallel (Hd1l,Hd2, ...) returns a discrete-time filter, Hd, which is a
structure of two or more dfilt filters, Hd1l, Hd2, etc. arranged in parallel. Each filter in
a parallel structure is a separate stage. You can display states for individual stages only.
To view the states of a stage use

Hd.stage(l) .states

To append a filter (Hd1) onto an existing parallel filter (Hd), use

addstage (Hd, Hd1)

You can also use the nondot notation format for calling a parallel structure.

parallel (Hd1l,Hd2,...)

r— — — — "

Hd1 ((z))

X[z)

‘o4

|
I
l Y
Hd2{(z}) _:_p@—b‘r'[z)

Y
.

1-403

1 Functions — Alphabetical List

1-404

Examples

Using a parallel structure, create a coupled-allpass decomposition of a 7th order lowpass
digital, elliptic filter with a normalized cutoff frequency of 0.5, 1 decibel of peak-to-peak
ripple and a minimum stopband attenuation of 40 decibels.

k1l = [-0.0154 0.9846 -0.3048 0.56017];
Hdl = dfilt.latticeallpass(kl);
k2 = [-0.1294 0.8341 -0.4165];

Hd2 = dfilt.latticeallpass(k2);

Hpar = parallel (Hdl ,Hd2);

gain = dfilt.scalar(0.5); % Normalize passband gain
Hcas = cascade (gain, Hpar) ;

For details on the stages of this filter, use
info (Hcas.Stage (1))

and

info (Hcas.Stage (2))

To view this filter, use

fvtool (Hcas)

dfilt.parallel

) Figure 1: Filter ¥isualization Tool - Magnitude Respol
File Edit Analysis Insert View ‘Window Help

=10l x|

DER|KOTNN\ND 280X |BE

AT R Bd 3 ¢ [T] o BB b @ Rl [

hWlagnitude Response (dB)

) :
e |
o |
= |
= :
[y '
=] '
['
= |
o N R AR TS T R S A

1] 04 0.2 0.3 0.4 045 0.6 0.7 05 0.4

Mormalized Frequency (=7 radisample)

dfilt | dfilt.cascade

Introduced before R2006a

1-405

1 Functions — Alphabetical List

dfilt.scalar

Discrete-time, scalar filter

Syntax

Hd = dfilt.scalar(g)
Hd dfilt.scalar

Description

Hd = dfilt.scalar (g) returns a discrete-time, scalar filter, Hd, with gain g, where g
1s a scalar.

Hd = dfilt.scalar returns a default, discrete-time scalar gain filter, Hd, with gain 1.

Examples

Create a direct-form I filter and a scalar object with a gain of 3 and cascade them
together.

b= 1[0.3 0.6 0.31;

a=1[100.2];

Hd filt = dfilt.dfl(b,a);

Hd gain = dfilt.scalar(3);

Hd cascade = cascade (Hd gain,Hd filt);

hfvt = fvtool (Hd filt,Hd gain,Hd cascade);

legend (hfvt, 'Original Filter',6 'Gain', 'Cascaded Filter', ...
'location', 'southwest"') ;

1-406

dfilt.scalar

) Filter Yisualization Tool - Figure 2: Magnitude Response {dB)}

File Edit Analysis Insert View Debug Desktop Window Help L ‘ a x
DER|EOTRNNGE 220X |EE BDB =0
[RICI R # & [— B bl @ B
Magnitude Response (dB)
T T T T T T T T
. SO DTS P NUTRUTT UUURUU DUTUUTUNS RUUUTTO NUR
o
10
g
5
2
=
g -20
=
| S
40 Original Fitter
Gain
Cascaded Fiter H 1 : | |
T T | | | | | | |
o 01 0z 03 04 0s 0g or 0& o4
Mormalized Frequency (xx radisample)
P

To view the stages of the cascaded filter, use

Hd.stage (1)

and

Hd.stage (2)

See Also

dfilt | dfilt.cascade

Introduced before R2006a

1-407

1 Functions — Alphabetical List

1-408

dfilt.statespace

Discrete-time, state-space filter

Syntax

Hd = dfilt.statespace(A,B,C,D)
Hd = dfilt.statespace

Description

Hd = dfilt.statespace (A, B, C,D) returns a discrete-time state-space filter, Hd, with
rectangular arrays A, B, C, and D.

A, B, C, and D are from the matrix or state-space form of a filter's difference equations
x(n+1)= Ax(n)+ Bu(n)
y(n)=Cx(n)+ Du(n)

where x(n) is the vector states at time n, u(n) is the input at time n, y is the output at
time n, A is the state-transition matrix, B is the input-to-state transmission matrix, C is
the state-to-output transmission matrix, and D is the input-to-output transmission
matrix. For single-channel systems, A is an m-by-m matrix where m is the order of the
filter, B is a column vector, C is a row vector, and D is a scalar.

Hd = dfilt.statespace returns a default, discrete-time state-space filter, Hd, with
A=[], B=[], c=[], and D=1. This filter passes the input through to the output unchanged.

dfilt.statespace

Statespace

¥
=
¥

Outt

y] —p++

B
o

¥
o
|

-

Input

The resulting filter states column vector has the same number of rows as the number of
rows of A or B.

Examples

Create a second-order, state-space filter structure from a second-order, lowpass
Butterworth design.

[A,B,C,D] = butter(2,0.5);
Hd = dfilt.statespace(A,B,C,D)

See Also

dfilt

Introduced before R2006a

1-409

1 Functions — Alphabetical List

1-410

dftmtx

Discrete Fourier transform matrix

Syntax

A = dftmtx(n)

Description

A discrete Fourier transform matrix is a complex matrix of values around the unit circle
whose matrix product with a vector computes the discrete Fourier transform of the
vector.

A = dftmtx (n) returns the n-by-n complex matrix, A, that, when multiplied into a
length-n column vector, x, computes the discrete Fourier transform of x. In other words,
y = A*xisthesameasy = fft(x).

The inverse discrete Fourier transform matrix is

Ai = conj(dftmtx(n))/n

Examples

The FFT and the DFT Matrix

In practice, it is more efficient to compute the discrete Fourier transform with the FFT
than with the DFT matrix. The FFT also uses less memory. The two procedures give the
same result.

x = 1:256;
vyl = fft(x);

n = length(x);

dftmtx

y2 = x*dftmtx(n);

norm(yl-y2)

ans = 7.7404e-12

Algorithms

dftmtx takes the FFT of the identity matrix to generate the transform matrix.

See Also

convmtx | £ft

Introduced before R2006a

1-411

1 Functions — Alphabetical List

1-412

digitalFilter class

Digital filter

Description

Use designfilt inthe form d = designfilt (resp,Name,Value) to design a
digital filter, d, with response type resp. Specify the filter further using a set of
Name, Value pairs.

Use designfilt in the form designfilt (d) to edit an existing filter, d.

Note This is the only way to edit a digitalFilter object. Its properties are
otherwise read-only.

Use filter in the form dataOut = filter (d,datalIn) to filter a signal with a
digitalFilter, d. The input can be a double- or single-precision vector. It can also
be a matrix with as many columns as there are input channels.

Use fvtool to visualize a digitalFilter, d.

The following functions take digitalFilter objects as input.

Filtering and Analysis Functions

Filtering

Function Description

fftfilt Filters a signal with a digitalFilter using an FFT-based
overlap-add method

filter Filters a signal using a digitalFilter

filtfilt Performs zero-phase filtering of a signal with a
digitalFilter

digitalFilter class

Filter Analysis

Function Description

double Casts the coefficients of a digitalFilter to double precision

filt2block Generates a Simulink filter block corresponding to a
digitalFilter

filtord Returns the filter order of a digitalFilter

firtype Returns the type (1, 2, 3, or 4) of an FIR digitalFilter

freqz Returns or plots the frequency response of a digitalFilter

fvtool Opens the Filter Visualization Tool and displays the
magnitude response of a digitalFilter

grpdelay Returns or plots the group delay response of a digitalFilter

impz Returns or plots the impulse response of a digitalFilter

impzlength Returns the length of the impulse response of a
digitalFilter, whether actual (for FIR filters) or effective
(for IIR filters)

info Returns a character array with information about a
digitalFilter

isallpass Returns trueifa digitalFilter is allpass

isdouble Returns true if the coefficients of a digitalFilter are
double precision

isfir Returns trueifa digitalFilter has a finite impulse
response

islinphase Returns true if a digitalFilter has linear phase

ismaxphase Returns true if a digitalFilter is maximum phase

isminphase Returns true ifa digitalFilter is minimum phase

issingle Returns true if the coefficients of a digitalFilter are
single precision

isstable Returns true ifa digitalFilter is stable

phasedelay Returns or plots the phase delay response of a digitalFilter

1-413

1 Functions — Alphabetical List

1-414

Function Description

phasez Returns or plots the (unwrapped) phase response of a
digitalFilter

single Casts the coefficients of a digitalFilter to single precision

ss Returns the state-space representation of a digitalFilter

stepz Returns or plots the step response of a digitalFilter

tf Returns the transfer function representation of a
digitalFilter

zerophase Returns or plots the zero-phase response of a digitalFilter

zpk Returns the zero-pole-gain representation of a
digitalFilter

zplane Displays the poles and zeros of the transfer function
represented by a digitalFilter

See Also

designfilt | double | fftfilt | filt2block | filter | filtfilt | filtord |
firtype | freqz | fvtool | grpdelay | impz | impzlength | info | isallpass |
isdouble | isfir | islinphase | ismaxphase | isminphase | issingle |

isstable | phasedelay | phasez | single | ss | stepz | tf | zerophase | zpk |

zplane

Introduced in R2014a

digitrevorder

digitrevorder

Permute input into digit-reversed order

Syntax

y = digitrevorder (x,r)
[y,1] = digitrevorder (x,r)

Description

digitrevorder is useful for pre-ordering a vector of filter coefficients for use in
frequency-domain filtering algorithms, in which the fft and i fft transforms are
computed without digit-reversed ordering for improved run-time efficiency.

y = digitrevorder (x, r) returns the input data in digit-reversed order in vector or
matrix y. The digit-reversal is computed using the number system base (radix base) r,
which can be any integer from 2 to 36. The length of x must be an integer power of r. If x
1s a matrix, the digit reversal occurs on the first dimension of x with size greater than 1.
y 1s the same size as x.

[y,1] = digitrevorder (x,r) returns the digit-reversed vector or matrix y and the
digit-reversed indices i, such that y = x (i). Recall that MATLAB matrices use 1-based
indexing, so the first index of y will be 1, not 0.

The following table shows the numbers O through 15, the corresponding digits and the
digit-reversed numbers using radix base-4. The corresponding radix base-2 bits and bit-
reversed indices are also shown.

Linear Base-4 Digit- Digit- Base-2 Base-2 Reversed |Bit- Reversed
Index Digits Reversed Reversed Bits (bitrevorder) Index
Index
0 00 00 0 0000 0000
01 10 4 0001 1000
2 02 20 8 0010 0100

1-415

1 Functions — Alphabetical List

Linear Base-4 Digit- Digit- Base-2 Base-2 Reversed |Bit- Reversed
Index Digits Reversed Reversed Bits (bitrevorder) Index
Index

3 03 30 12 0011 1100 12

4 10 01 1 0100 0010 2

5 11 11 0101 1010 10

6 12 21 0110 0110 6

7 13 31 13 0111 1110 14

8 20 02 1000 0001

9 21 12 1001 1001

10 22 22 10 1010 0101

11 23 32 14 1011 1101 13

12 30 03 1100 0011 3

13 31 13 1101 1011 11

14 32 23 11 1110 0111 7

15 33 33 15 1111 1111 15
Examples

1-416

Base-3 Digit-Reversed Order

Obtain the digit-reversed, radix base-3 ordered output of a vector containing 9 values.
Obtain the same result by converting to base 3 and reversing the digits.

X

y

cl
c2
c3

T = table(x,y,cl,c2,c3)

(0:8)";

digitrevorder (x,3);

dec2base (x,3);
fliplr(cl);
base2dec (c2,3);

digitrevorder

T=9x5 table

X vy cl
0 0 00
1 3 01
2 6 02
3 1 10
4 4 11
5 7 12
6 2 20
7 5 21
8 8 22
See Also

bitrevorder | £fft | ifft

00
10
20
01
11
21
02
12
22

Introduced before R2006a

QO U N Jd oYW O

1-417

1 Functions — Alphabetical List

diric

Dirichlet or periodic sinc function

Syntax

y = diric(x,n)

Description

y = diric(x,n) returns a vector or array y the same size as x. The elements of vy are
the Dirichlet function of the elements of x. n must be a positive integer.

Examples

Dirichlet Function

Compute and plot the Dirichlet function between —2% and 27 for N=7 and N=8.

x = linspace (-2*pi,2*pi, 301);

a7
ds

diric(x,7);
diric(x,8);

subplot(2,1,1)

plot (x/pi,d7)

ylabel ('N = 7")
title('Dirichlet Function')

subplot (2,1, 2)
plot (x/pi,d8)
ylabel ('N = 8")
xlabel ('x / \pi'")

1-418

diric

Dirichlet Function

" ﬂ\/’\/ \J \/\/ \J

/

{

-2 -1.5 -1 0.5 0 0.5 1 1.5

-2 -1.5 -1 0.5 1] 0.5
X/

The function has a period of 27 for odd N and 47 for even N.

Periodic and Aperiodic Sinc Functions

The Dirichlet and sinc functions are related by

Tllustrate this fact for ¥ =0,

xmax = 2;
x = linspace (-xmax,xmax,1001)"';

1 - T T T /l T T T -

0.5 lI|l."
ool /NN N/ ’_/’\/\
/]
"II ‘ITE 2

Dyinx) = sinc{Nx/2)/ sinc{x/2)

1-419

1 Functions — Alphabetical List

1-420

N = 6;

yd = diric(x*pi,N);
VS sinc (N*x/2) ./sinc(x/2);

subplot(2,1,1)

plot (x,yd)

title (' D_6 (x*pi) ")

subplot (2,1, 2)

plot(x,ys)

title('sinc(6*x/2) / sinc(x/2)")

D, (x*pi)

1 T T T T T T T
05 I/ .
oL \//\J/ _/_,;/ 4
05 _
-1 L L L L L !
-2 -1.5 -1 -0.5 0 0.5 15
; sinc(6*x/2) [sinc{x/2)
0.5F I/ .
oL \/r\, / a4 _
05 T
-1 L L L L L 1
-2 -15 -1 0.5 0 0.5 15

Repeat the calculation for N=9

diric

N = 9;

diric(x*pi,N);

yd =
ys = sinc(N*x/2)./sinc(x/2);

subplot(2,1,1)
plot (x,yd)

title (' D_9 (x*pi) ")
subplot (2,1, 2)

plot(x,ys)
title('sinc (9*x/2)

/ sinc(x/2)")

2

D, (x*Ppi)
1 ' ' i ' ' ' /
[[
DE - II|II II|II -
~ f'll ~ ."II
ot /\/ N\ J /\/ N\ /1
o 5-2 -1I. 5 1 D 5 IIII- IZI'.IE 1 1 5 2
sinc(9*x/2) [sinc{x/2)
1 ' ' ' i ' ' ' J
{ {
05t / [
~ ."II ~ a'll
IAVAVAVAYERVAVAVAYE
0o -1I.5 1 —EI:.E IIII- IZI'.IE 1 1?5

1-421

1 Functions — Alphabetical List

Diagnostics

If n is not a positive integer, diric gives the following error message:

Requires n to be a positive integer.

Definitions

Dirichlet Function

The Dirichlet function, or periodic sinc function, is
sin(Nx / 2)
Dy (x) =1 Nsin(x/2)
(—DFN-D v _onk k=0,+1,4243,...

x#2rk, k=0,+t1,£243,...

for any nonzero integer N. This function has period 2m for odd IV and period 41 for even
N. Its peak value is 1, and its minimum value is —1 for even N. The magnitude of the
function is 1/N times the magnitude of the discrete-time Fourier transform of the N-point
rectangular window.

See Also
cos | gauspuls | pulstran | rectpuls | sawtooth | sin | sinc | square

tripuls

Introduced before R2006a

1-422

double

double

Cast coefficients of digital filter to double precision

Syntax

£f2 = double (£f1)

Description

f2 = double (f1) casts coefficients in a digital filter, £1, to double precision and
returns a new digital filter, £2, that contains these coefficients.

Examples

Lowpass FIR Filter in Single and Double Precision

Use designfilt to design a 5th-order FIR lowpass filter. Specify a normalized passband

frequency of 0.2x rad/sample and a normalized stopband frequency of 0.55x rad/sample.

Cast the filter to single precision and cast it back to double precision. Display the first
coefficient of each filter.

format long

d = designfilt('lowpassfir', 'FilterOrder',5,
'PassbandFrequency', 0.2, 'StopbandFrequency', 0.55);

e = single(d);

f = double(e);

coed = d.Coefficients (1)
coed =

0.003947882145754

coee = e.Coefficients (1)

1-423

1 Functions — Alphabetical List

1-424

coee = single

0.0039479
coef = f.Coefficients (1)
coef =

0.003947881981730

Use double to analyze, in double precision, the effects of single-precision quantization of
filter coefficients.

Input Arguments

£1 — Single-precision digital filter
digitalFilter object

Single-precision digital filter, specified as a digitalFilter object. Use designfilt to
generate a digital filter based on frequency-response specifications and single to cast it
to single precision.

Example: f1= single (designfilt ('lowpassfir', 'FilterOrder',
3, '"HalfPowerFrequency', 0.5)) specifies a third-order Butterworth filter with
normalized 3-dB frequency 0.51 rad/sample cast in single precision.

Output Arguments

£2 — Double-precision digital filter
digitalFilter object

Double-precision digital filter, returned as a digitalFilter object.

See Also

designfilt | digitalFilter | isdouble | issingle | single

double

Introduced in R2014a

1-425

1 Functions — Alphabetical List

1-426

downsample

Decrease sampling rate by integer factor

Syntax

y = downsample (x,n)
y = downsample (x,n,phase)

Description

y = downsample (x,n) decreases the sampling rate of x by keeping every nth sample
starting with the first sample. x can be a vector or a matrix. If x is a matrix, each column
1s considered a separate sequence.

y = downsample (x,n,phase) specifies the number of samples by which to offset the
downsampled sequence. phase must be an integer from 0 to n — 1.

Examples

Decrease Sampling Rates

Decrease the sampling rate of a sequence by 3.

x =[12345%6 789 10];
y = downsample (x,3)

y =

Decrease the sampling rate of the sequence by 3 and add a phase offset of 2.

y = downsample (x,3,2)

downsample

Decrease the sampling rate of a matrix by 3.

x = [1 2 3;
4 5 6;
7 8 9;
10 11 1271;

y = downsample (%, 3)

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™,

See Also

decimate | interp | interpl | resample | spline | upfirdn | upsample

Introduced before R2006a

1-427

1 Functions — Alphabetical List

1-428

dpss

Discrete prolate spheroidal (Slepian) sequences

Syntax

dps seq = dpss(seq length,time halfbandwidth)
dpsiseq,lambdaJ = dpss(seq length, time halfbandwidth)
.] = dpss(seq length, time halfbandwidth, numﬁseq)
.] = dpss(seq length time halfbandwidth, "interp method')
. dpss (. i)
.] dpss (.

[
[.
[.
[.
[.

'trace)

Description

dps seq = dpss(seq length,time halfbandwidth) returns the first

round (2*time halfbandwidth) discrete prolate spheroidal (DPSS), or Slepian
sequences of length seq length. dps seqis a matrix with seq length rows and
round (2*time halfbandwidth) columns. time halfbandwidth must be strictly less
than seq length/2.

[dps_seq, lambda] = dpss(seq length,time halfbandwidth) returns the
frequency-domain energy concentration ratios of the column vectors in dps_seq. The
ratios represent the amount of energy in the passband [-W,W] to the total energy from [
F/2,F /2], where F is the sampling frequency. 1ambda is a column vector equal in length
to the number of Slepian sequences.

[...] = dpss(seq length,time halfbandwidth,num seq) returns the first
num_seq Slepian sequences with time half bandwidth product time halfbandwidth
ordered by their energy concentration ratios. If num seq is a two-element vector, the
returned Slepian sequences range from num seq (1) to num seq(2).

[...] = dpss(seq length,time halfbandwidth, 'interp method') uses
interpolation to compute the DPSSs from a user-created database of DPSSs. Create the
database of DPSSs with dpsssave and ensure that the resulting file, dpss.mat, is in
the MATLAB search path. Valid options for 'interp method' are 'spline' and

dpss

"linear'. The interpolation method uses the Slepian sequences in the database with
time half bandwidth product time halfbandwidth and length closest to seq length.

[...] = dpss(...,Ni) interpolates from DPSSs of length Ni in the database
dpss.mat.

[...] = dpss(..., ' 'trace"') prints the method used to compute the DPSSs in the
command window. Possible methods include: direct, spline interpolation, and linear
interpolation.

Examples

Generate a Set of Slepian Sequences

Construct the first four discrete prolate spheroidal sequences of length 512. Specify a
time half bandwidth product of 2.5. Plot the sequences and find the concentration ratios.

seq length = 512;

time halfbandwidth = 2.5;

num_seq = 2*(2.5)-1;

[dps_seq, lambda] = dpss(seq_length,time halfbandwidth,num seq);

plot (dps_seq)

title('Slepian Sequences, N = 512, NW = 2.5")
axis ([0 512 -0.15 0.15])
legend('lst', '2nd', '3xrd', "4th")

1-429

1 Functions — Alphabetical List

Slepian Sequences, N= 512, NW = 2.5

1st
2nd
0.1 3rd | 4

0.05

-0.05

—D_ 1 5 i i i i i i i i i i
0 50 100 150 200 250 300 350 400 450 500

concentration ratios = lambda'

concentration ratios

1.0000 0.9998 0.9962 0.9521

1-430

dpss

Definitions

Discrete Prolate Spheroidal Sequences

The discrete prolate spheroidal or Slepian sequences derive from the following time-
frequency concentration problem. For all finite-energy sequences x[n] index limited to

some set [N1,N; + N1, which sequence maximizes the following ratio:

w
[1xHPdr
-w

Fs/2
[1x(OP df

—Fs/2

A’:

where F, is the sampling frequency and [W|< Fs/2. Accordingly, this ratio determines
which index-limited sequence has the largest proportion of its energy in the band [-W,W].

For index-limited sequences, the ratio must satisfy the inequality 0 <A <1. The
sequence maximizing the ratio is the first discrete prolate spheroidal or Slepian
sequence. The second Slepian sequence maximizes the ratio and is orthogonal to the first
Slepian sequence. The third Slepian sequence maximizes the ratio of integrals and is
orthogonal to both the first and second Slepian sequences. Continuing in this way, the
Slepian sequences form an orthogonal set of bandlimited sequences.

Time Half Bandwidth Product

The time half bandwidth product is NW where N is the length of the sequence and [-
W, W] is the effective bandwidth of the sequence. In constructing Slepian sequences, you
choose the desired sequence length and bandwidth 2W. Both the sequence length and
bandwidth affect how many Slepian sequences have concentration ratios near one. As a
rule, there are 2NW — 1 Slepian sequences with energy concentration ratios
approximately equal to one. Beyond 2NW — 1 Slepian sequences, the concentration ratios
begin to approach zero. Common choices for the time half bandwidth product are: 2.5, 3,
3.5, and 4.

You can specify the bandwidth of the Slepian sequences in Hz by defining the time half
bandwidth product as NW/F,, where F, is the sampling frequency.

1431

1 Functions — Alphabetical List

References

Percival, D. B., and A. T. Walden. Spectral Analysis for Physical Applications.
Cambridge, UK: Cambridge University Press, 1993.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not
change.

See Also

dpssclear | dpssload | dpsssave | pmtm

Topics
“Nonparametric Methods”

Introduced before R2006a

1-432

dpssclear

dpssclear

Remove discrete prolate spheroidal sequences from database

Syntax

dpssclear (n, nw)

Description

dpssclear (n, nw) removes sequences with length n and time-bandwidth product nw
from the DPSS MAT-file database dpss.mat.

See Also
dpss | dpssdir | dpssload | dpsssave

Introduced before R2006a

1-433

1 Functions — Alphabetical List

dpssdir

Discrete prolate spheroidal sequences database directory

Syntax

dpssdir
dpssdir (n)
dpssdir (nw, 'nw'")
dpssdir (n, nw)
index = dpssdir

Description

dpssdir manages the database directory that contains the generated DPSS samples in
the DPSS MAT-file database dpss.mat. Create the DPSS MAT-file database with
dpsssave.

dpssdir lists the directory of saved sequences in dpss.mat.

dpssdir (n) lists the sequences saved with length n.

dpssdir (nw, 'nw') lists the sequences saved with time-bandwidth product nw.
dpssdir (n, nw) lists the sequences saved with length n and time-bandwidth product nw.

index = dpssdir is a structure array describing the DPSS database. Pass n and nw
options as for the no output case to get a filtered index.

See Also

dpss | dpssclear | dpssload | dpsssave

Introduced before R2006a

1-434

dpssload

dpssload

Load discrete prolate spheroidal sequences from database

Syntax

[e,v] = dpssload(n,nw)
Description
[e,v] = dpssload(n,nw) loads all sequences with length n and time-bandwidth

product nw in the columns of e and their corresponding concentrations in vector v from
the DPSS MAT-file database dpss.mat. Create the dpss.mat file using dpssave.

See Also

dpss | dpssclear | dpssdir | dpsssave

Introduced before R2006a

1-435

1 Functions — Alphabetical List

1-436

dpsssave

Discrete prolate spheroidal or Slepian sequence database

Syntax

dpsssave (time halfbandwith,dps seq, lambda)
status = dpsssave (time halfbandwith,dps seq, lambda)

Description

dpsssave (time halfbandwith,dps_ seq, lambda) creates a database of discrete
prolate spheroidal (DPSS) or Slepian sequences and saves the results in dpss.mat. The
time half bandwidth producttime halfbandwith is a real-valued scalar determining
the frequency concentration of the Slepian sequences in dps_seq. dps_seq is a NxK
matrix of Slepian sequences where N is the length of the sequences. 1ambda is a 1xK
vector containing the frequency concentration ratios of the Slepian sequences in

dps seq.

If the database dpss.mat exists, subsequent calls to dpsssave append the Slepian
sequences to the existing file. If the sequences are already in the existing file, dpsssave
overwrites the old values and issues a warning.

status = dpsssave (time halfbandwith,dps seq, lambda) returns a O if the
database operation was successful or a 1 if unsuccessful.

Examples

Create a Database of Slepian Sequences

Construct the first four discrete prolate spheroidal sequences of length 512. Specify a
time half bandwidth product of 2.5. Use them to create a database of Slepian sequences,
dpss.mat, in the current working directory. The output variable, status, is 0 if there is
success.

dpsssave

seq length = 512;

time halfbandwidth = 2.5;

num_seq = 4;

[dps_seq, lambda] = dpss(seq_length,time halfbandwidth);
status = dpsssave (time halfbandwidth,dps seqg, lambda)

status = 0

Definitions

Discrete Prolate Spheroidal Sequences

The discrete prolate spheroidal or Slepian sequences derive from the following time-
frequency concentration problem. For all finite-energy sequences x[n] index limited to

some set [N7,N; + N1, which sequence maximizes the following ratio:

w
[1x(H P
-W

Fs/2
[1x(r)Paf

—Fs/2

l:

where F, is the sampling frequency and [W|< Fs/2. Accordingly, this ratio determines
which index-limited sequence has the largest proportion of its energy in the band [-W,W].

For index-limited sequences, the ratio must satisfy the inequality 0 <A <1. The
sequence maximizing the ratio is the first discrete prolate spheroidal or Slepian
sequence. The second Slepian sequence maximizes the ratio and is orthogonal to the first
Slepian sequence. The third Slepian sequence maximizes the ratio of integrals and is
orthogonal to both the first and second Slepian sequences. Continuing in this way, the
Slepian sequences form an orthogonal set of bandlimited sequences.

Time Half Bandwidth Product

The time half bandwidth product is NW where N is the length of the sequence and [-
W, W] is the effective bandwidth of the sequence. In constructing Slepian sequences, you
choose the desired sequence length and bandwidth 2W. Both the sequence length and

1-437

1 Functions — Alphabetical List

1-438

bandwidth affect how many Slepian sequences have concentration ratios near one. As a
rule, there are 2NW — 1 Slepian sequences with energy concentration ratios
approximately equal to one. Beyond 2NW — 1 Slepian sequences, the concentration ratios
begin to approach zero. Common choices for the time half bandwidth product are: 2.5, 3,
3.5, and 4.

You can specify the bandwidth of the Slepian sequences in Hz by defining the time half
bandwidth product as NW/F,, where F is the sampling frequency.

References

Percival, D. B., and A. T. Walden. Spectral Analysis for Physical Applications.
Cambridge, UK: Cambridge University Press, 1993.

See Also
dpss | dpssclear | dpssdir | dpssload

Introduced before R2006a

dspdata

dspdata

DSP data parameter information

Syntax

Hs = dspdata.dataobj (inputl,...)

Description

Note The use of dspdata.dataobj is not recommended. Use the appropriate function
interface instead.

Hs = dspdata.dataobj (inputl, ...) returns a dspdata object Hs of type dataobj.
This object contains all the parameter information needed for the specified type of
dataobj. Each dataobj takes one or more inputs, which are described on the individual
reference pages. If you do not specify any input values, the returned object has default
property values appropriate for the particular dataobj type.

Note You must use a dataobj with dspdata.

Data Objects

A data object, dataob7, for dspdata specifies the type of data stored in the object.
Available dataobj types for dspdata are shown below.

dspdata.dataobj Description Corresponding Functions
dspdata.msspectr |Mean-square spectrum data periodogram
um (power)

pwelch

1-439

1 Functions — Alphabetical List

dspdata.dataobj

Description

Corresponding Functions

dspdata.psd

Power spectral density data
(power/frequency)

pburg

pcov
periodogram
pmcov

pmtm

pwelch

pyulear

dspdata.pseudosp
ectrum

Pseudospectrum data (power)

peig

pmusic

For more information on each dataobj type, use the syntax help dspdata.dataobj at
the MATLAB prompt or refer to its reference page.

Methods

Methods provide ways of performing functions directly on your dspdata object. You can
apply these methods directly on the variable you assigned to your dspdata object.

1-440

dspdata

Method

Description

avgpower

This method applies only to dspdata.psd objects.

avgpower (Hs) computes the average power of a signal,
Hs, 1n a given frequency band. The technique uses a
rectangle approximation of the integral of the signal's
power spectral density (PSD). If the signal is a matrix, the
computation is done on each column. The average power is
the total signal power. The SpectrumType property
determines whether the total average power is contained
in the one-sided or the two-sided spectrum. For a one-
sided spectrum, the range is [0,pi] if the number of
frequency points is even and [0,pi) if it is odd. For a two-
sided spectrum, the range is [0,2p1).

avgpower (Hs, freqgrange) specifies the frequency range
over which to calculate the average power. freqrange is a
two-element vector containing the lower and upper bounds
of the frequency range. If a frequency value does not
match exactly the frequency in Hs, the next closest value
is used. The first frequency value in fregrange is
included in the calculation and the second value is
excluded.

centerdc

centerdc (Hs) or centerdc (Hs, true) shifts the data
and frequency values so that the DC component is at the
center of the spectrum. If the Spect rumType property is
'onesided', it is changed to 'twosided' and then the
DC component is centered.

centerdc (Hs, 'false') shifts the data and frequency
values so that the DC component is at the left edge of the
spectrum.

1-441

1 Functions — Alphabetical List

1-442

Method

Description

findpeaks

findpeaks (Hs) finds local maxima or peaks. If no peaks
are found, findpeaks returns an empty vector.

[pks, frgs] = findpeaks (x) returns the peaks’ values,
pks, and the frequencies, frgs, at which they occur.

findpeaks (x, 'minpeakheight', mph) returns only
peaks greater than the minimum peak height mph, where
mph is a real scalar. The default is -Inf.

findpeaks (x, 'minpeakdistance', mpd) returns only
peaks separated by the minimum frequency units distance
mpd, which is a positive integer. Setting the minimum
peak distance ignores smaller peaks that may occur close
to larger local peaks. The default is 1.

findpeaks (x, "threshold', th) returns only peaks
greater than their neighbors by at least the threshold, th,

which is a real, scalar value greater than or equal to 0.
The default is 0.

findpeaks (x, 'npeaks',np) returns a maximum of np
number of peaks. When np peaks are found, the search
stops. The default is to return all peaks.

findpeaks (x, 'sortstr', str) specifies the sorting
order, where stris 'ascend', 'descend’, or 'none’'.
When stris set to 'ascend’, the peaks are sorted from
smallest to largest. When str is set to 'descend' the
peaks are sorted in descending order. When str is set to
'none', the peaks are returned in the order in which they
occur.

dspdata

Method

Description

halfrange

halfrange (Hs) converts the spectrum of Hs to a
spectrum calculated over half the Nyquist interval. All
associated properties affected by the new frequency range
are adjusted automatically. This method is used for
dspdata.pseudospectrum objects.

The spectrum is assumed to be from a real signal. That is,
halfrange uses half the data points regardless of
whether the data is symmetric.

normalizefreq

normalizefreq(Hs) or normalizefreq (Hs, true)
normalizes the frequency specifications in the Hs object to
F's so the frequencies are between 0 and 1. It also sets the
NormalizedFrequency property to true.

normalizefreq(Hs, false) converts the frequencies to
linear frequencies.

normalizefreq(Hs, false, Fs) sets a new sampling
frequency, F's. This can be used only with false.

onesided

onesided (Hs) converts the spectrum of Hs to a spectrum
calculated over half the Nyquist interval and containing
the total signal power. All associated properties affected by
the new frequency range are adjusted automatically. This
method 1s used for dspdata.psd and
dspdata.msspectrum objects.

The spectrum is assumed to be from a real signal. That is,
onesided uses half the data points regardless of whether
the data 1s symmetric.

1-443

1 Functions — Alphabetical List

1-444

Method

Description

plot

Displays the data graphically in the current figure
window.

For a dspdata.psd object, it displays the power spectral
density in dB/Hz.

For a dspdata.msspectrum object, it displays the mean—
square in dB.

For a dspdata.pseudospectrum object, it displays the
pseudospectrum in dB.

sfdr

This method applies only to dspdata.msspectrum
objects.

sfdr (Hs) computes the spurious-free dynamic range
(SFDR) in dB of a mean square spectrum object Hs. SFDR
is the usable range before spurious noise interferes with
the signal.

[sfd, spur, frq] = sfdr (Hs) returns the magnitude of
the highest spur and the frequency frqg at which it occurs.

sfdr (Hs, 'minspurlevel',msl) ignores spurs below
the minimum spur level ms1, which is a real scalar in dB.

sfdr (Hs, 'minspurdistance',msd) includes spurs only
if they are separated by at least the minimum spur
distance msd, which is a real, positive scalar in frequency
units.

twosided

twosided (Hs) converts the Hs spectrum to a spectrum
calculated over the whole Nyquist interval. All associated
properties affected by the new frequency range are
adjusted automatically. This method is used for
dspdata.psd and dspdata.msspectrum objects.

If your data is nonuniformly sampled, converting from
onesided to twosided may produce incorrect results.

dspdata

Method Description

wholerange wholerange (Hs) converts the Hs spectrum to a spectrum
calculated over the whole Nyquist interval. All associated
properties affected by the new frequency range are
adjusted automatically. This method is used for
dspdata.pseudospectrum objects.

If your data is nonuniformly sampled, converting from
half to wholerange may produce incorrect results.

For more information on each method, use the syntax help dspdata/method at the
MATLAB prompt.

Plotting a dspdata Object

The plot method displays the dspdata object spectrum in a separate figure window.

Modifying a dspdata Object

After you create a dspdata object, you can use any of the methods in the table above to
modify the object properties. For example, to change an object, Hs, from two-sided to one-
sided, use onesided (Hs).

Examples

See the dspdata.msspectrum, dspdata.psd, and dspdata.pseudospectrum
reference pages for specific examples.

See Also

pburg | pcov | peig | periodogram | pmcov | pmtm | pmusic | pwelch | pyulear

Introduced before R2006a

1-445

1 Functions — Alphabetical List

dspdata.msspectrum

Mean-square (power) spectrum

Syntax

Hmss = dspdata.msspectrum(Data)

Hmss = dspdata.msspectrum(Data, Frequencies)

Hmss = dspdata.msspectrum(...,'Fs',Fs)

Hmss = dspdata.msspectrum(..., 'SpectrumType’', SpectrumType)
Hmss = dspdata.msspectrum(..., 'CenterDC',flaqg)
Description

Note The use of dspdata.msspectrum is not recommended. Use periodogram or
pwelch instead.

The mean-squared spectrum (MSS) is intended for discrete spectra. Unlike the power
spectral density (PSD), the peaks in the MSS reflect the power in the signal at a given
frequency. The MSS of a signal is the Fourier transform of that signal's autocorrelation.

Hmss = dspdata.msspectrum(Data) uses the mean-square (power) spectrum data
contained in Data, which can be in the form of a vector or a matrix, where each column is
a separate set of data. Default values for other properties of the object are as follows:

Property Default Value Description
Name 'Mean-square Read-only character vector
Spectrum'

1-446

dspdata.msspectrum

Property

Default Value

Description

Frequencies

[]

type double

Vector of frequencies at which the spectrum
is evaluated. The range of this vector
depends on the SpectrumType value. For a
one-sided spectrum, the default range is [0,
) or [0, Fs/2) for odd length, and [0,] or
[0, Fs/2] for even length, if Fs is specified.
For a two-sided spectrum, it is [0, 2m) or [0,
Fs).

The length of the Frequencies vector must
match the length of the columns of Data.

If you do not specify Frequencies, a
default vector is created. If one-sided is
selected, then the whole number of FFT
points (nFFT) for this vector is assumed to
be even.

If onesided is selected and you specify
Frequencies, the last frequency point is
compared to the next-to-last point and to pi
(or Fs/2, if F's is specified). If the last point
is closer to pi (or Fs/2) than it is to the
previous point, nFFT is assumed to be even.
If it is closer to the previous point, nFFT is
assumed to be odd.

F's

'"Normalized'

Sampling frequency, which is
'Normalized' if NormalizedFrequency
is true. If NormalizedFrequency is
false Fs defaults to 1 Hz.

1-447

1 Functions — Alphabetical List

Property

Default Value Description

SpectrumType '"Onesided’ Nyquist interval over which the spectral

density is calculated. Valid values are
'Onesided' and 'Twosided'. See the
onesided and twosided methods in
dspdata for information on changing this
property.

The interval for Onesided is [0 m) or [0 m]
depending on the number of FFT points,
and for Twosided the interval is [0 2m).

NormalizedFrequency |true Whether the frequency is normalized (true)

or not (false). This property is set
automatically at construction time based on
Fs. If Fs 1s specified,
NormalizedFrequency is set to false.
See the normalizefreq method in
dspdata for information on changing this
property.

1-448

Hmss = dspdata.msspectrum(Data, Frequencies) uses the mean—square spectrum
data contained in Data and Frequencies vectors.

Hmss = dspdata.msspectrum(...,'Fs',6 Fs) uses the sampling frequency Fs.
Specifying Fs uses a default set of linear frequencies (in Hz) based on Fs and sets
NormalizedFrequency to false.

Hmss = dspdata.msspectrum(..., 'SpectrumType', SpectrumType) uses
SpectrumType to specify the interval over which the mean-square spectrum was
calculated. For data that ranges from [0) or [0], set the SpectrumType to onesided;
for data that ranges from [0 2m), set the SpectrumType to twosided.

Hmss = dspdata.msspectrum(...,'CenterDC', flag) uses the value of flag to
indicate whether the zero-frequency (DC) component is centered. If flag is true, it
indicates that the DC component is in the center of the two-sided spectrum. Set the flag
to false if the DC component is on the left edge of the spectrum.

dspdata.msspectrum

Methods

Methods provide ways of performing functions directly on your dspdata object without
having to specify the parameters again. You can apply a method directly on the variable
you assigned to your dspdata.msspectrum object. You can use the following methods
with a dspdata.msspectrum object.

* centerdc

* normalizefreq
*+ onesided

« plot

+ sfdr

+ twosided

For example, to normalize the frequency and set the NormalizedFrequency parameter
to true, use

Hmss = normalizefreq(Hs)

For detailed information on using the methods and plotting the spectrum, see the
dspdata reference page.

Examples

Mean-Square Spectrum of Sinusoids

Create a signal consisting of two sinusoids in additive noise.
Fs = 32e3;

t = 0:1/Fs:1-1/Fs;
X = cos (2*pi*t*1.24e3)+cos (2*pi*t*10e3)+randn(size(t));

Compute the one-sided PSD estimate of the signal. Use the result to construct a dspdata
object. Plot the mean-square spectrum.

P = periodogram(x, []1,[],Fs);

Hmss = dspdata.msspectrum(P, 'Fs',Fs, "spectrumtype', 'onesided");

1-449

1 Functions — Alphabetical List

plot (Hmss)

Mean-Square Spectrum

Fower (dB)

16

-80 7
90 i
—1D‘D i i i i i i i
0 2 4 6 8 10 12 14
Frequency (kHz)
See Also

periodogram | pwelch

Introduced before R2006a

1-450

dspdata.psd

dspdata.psd

Power spectral density

Syntax

Hpsd = dspdata.psd(Data)

Hpsd = dspdata.psd(Data, Frequencies)

Hpsd = dspdata.psd(...,'Fs',6Fs)

Hpsd = dspdata.psd(..., 'SpectrumType', SpectrumType)
Hpsd = dspdata.psd(..., 'CenterDC',flaqg)

Description

Note The use of dspdata.psd is not recommended. Use pburg, pcov, periodogram,
pmcov, pmtm, pwelch, or pyulear instead.

The power spectral density (PSD) is intended for continuous spectra. The integral of the
PSD over a given frequency band computes the average power in the signal over that
frequency band. In contrast to the mean-squared spectrum, the peaks in this spectra do
not reflect the power at a given frequency. See the avgpower method of dspdata for
more information.

A one-sided PSD contains the total power of the signal in the frequency interval from DC
to half of the Nyquist rate. A two-sided PSD contains the total power in the frequency
interval from DC to the Nyquist rate.

Hpsd = dspdata.psd(Data) uses the power spectral density data contained in Data,
which can be in the form of a vector or a matrix, where each column is a separate set of
data. Default values for other properties of the object are shown below:

Property Default Value Description
Name 'Power Spectral Read-only character vector
Density'

1-451

1 Functions — Alphabetical List

Property

Default Value

Description

Frequencies

[]

type double

Vector of frequencies at which the power
spectral density is evaluated. The range of
this vector depends on the SpectrumType
value. For one-sided, the default range is [0,
m) or [0, Fs/2) for odd length, and [0, m] or [0,
Fs/2] for even length, if Fs is specified. For
two-sided, it is [0, 2pi) or [0, F's).

If you do not specify Frequencies, a default
vector 1s created. If one-sided is selected,
then the whole number of FFT points

(nFFT) for this vector is assumed to be even.

If onesided is selected and you specify
Frequencies, the last frequency point is
compared to the next-to-last point and to mr
(or Fs/2, if Fs is specified). If the last point is
closer to r (or Fs/2) than it is to the previous
point, nFFT is assumed to be even. If it is
closer to the previous point, nFFT is
assumed to be odd.

The length of the Frequencies vector must
match the length of the columns of Data.

Fs

'Normalized'

Sampling frequency, which is

'"Normalized' if NormalizedFrequency
is true. If NormalizedFrequency is false
Fs defaults to 1.

1-452

dspdata.psd

Property

Default Value Description

SpectrumType 'Onesided’ Nyquist interval over which the power

spectral density is calculated. Valid values
are 'Onesided' and 'Twosided'. A one-
sided PSD contains the total signal power in
half the Nyquist interval. See the onesided
and twosided methods in dspdata for
information on changing this property.

The range for half the Nyquist interval is

[0 pi1) or [0 pi] depending on the number of
FFT points. For the whole Nyquist interval,
the range is [0 2p1).

NormalizedFrequency true Whether the frequency is normalized (true)

or not (false). This property is set
automatically at construction time based on
Fs. If F's is specified,
NormalizedFrequency is set to false. See
the normalizefreq method in dspdata for
information on changing this property.

Hpsd = dspdata.psd(Data, Frequencies) uses the power spectral density
estimation data contained in Data and Frequencies vectors.

Hpsd = dspdata.psd(...,'Fs', Fs) uses the sampling frequency Fs. Specifying Fs
uses a default set of linear frequencies (in Hz) based on Fs and sets
NormalizedFrequency to false.

Hpsd = dspdata.psd(..., 'SpectrumType', SpectrumType) specifies the interval
over which the power spectral density is calculated. For data that ranges from [0 m) or
[0 m], set the SpectrumType to onesided; for data that ranges from [0 2m), set the
SpectrumType to twosided.

Hpsd = dspdata.psd(..., 'CenterDC', flag) uses the value of flag to indicate
whether the zero-frequency (DC) component is centered. If f1ag is true, it indicates that
the DC component is in the center of the two-sided spectrum. Set the flag to false if
the DC component is on the left edge of the spectrum.

1-453

1 Functions — Alphabetical List

1-454

Methods

Methods provide ways of performing functions directly on your dspdata object. You can
apply a method directly on the variable you assigned to your dspdata.psd object. You
can use the following methods with a dspdata.psd object.

* avgpower
* centerdc

* normalizefreqg
*+ onesided

+ plot

* twosided

For example, to normalize the frequency and set the NormalizedFrequency parameter
to true, use

Hpsd = normalizefreq(Hpsd)

For detailed information on using the methods and plotting the spectrum, see the
dspdata reference page.

Examples

Resolve Signal Components

Estimate the one-sided power spectral density of a noisy sinusoidal signal with two
frequency components.

Fs = 32e3;

t = 0:1/Fs:2.96;

X = cos (2*pi*t*1.24e3)+ cos(2*pi*t*10e3)+ randn(size(t));
nfft = 2”"nextpow2 (length(x));

Pxx = abs(fft(x,nfft)).”2/length(x)/Fs;

Store the spectrum in a PSD data object and plot the result.

Hpsd = dspdata.psd(Pxx(l:length (Pxx)/2),'Fs',Fs);
plot (Hpsd)

dspdata.psd

Fowerffrequency (dB/Hz)

Power Spectral Density

=30 1 7

-90

—1":”} i i i i i i i
0 2 4 G 8 10 12 14 16

Frequency (kHz)

Create a two-sided spectrum and plot it.

Hpsd = dspdata.psd(Pxx, 'Fs',Fs, 'SpectrumType', 'twosided') ;
plot (Hpsd)

1-455

1 Functions — Alphabetical List

Power Spectral Density

Fowerffrequency (dB/Hz)

90 1
_1 D‘D i i i i i i
0 5 10 15 20 25 30
Frequency (kHz)
See Also

pburg | pcov | periodogram | pmcov | pmtm | pwelch | pyulear

Introduced before R2006a

1-456

dspdata.pseudospectrum

dspdata.pseudospectrum

Pseudospectrum dspdata object

Syntax

Hps = dspdata.pseudospectrum(Data)

Hps = dspdata.pseudospectrum(Data, Frequencies)

Hps = dspdata.pseudospectrum(...,'Fs',Fs)

Hps = dspdata.pseudospectrum(..., 'SpectrumRange', SpectrumRange)
Hps = dspdata.pseudospectrum(..., 'CenterDC',flaqg)

Description

Note The use of dspdata.pseudospectrum is not recommended. Use peig or pmusic
instead.

A pseudospectrum is an indicator of the presence of sinusoidal components in a signal.

Hps = dspdata.pseudospectrum(Data) uses the pseudospectrum data contained in
Data, which can be in the form of a vector or a matrix, where each column is a separate
set of data. Default values for other properties of the object are:

Property

Default Value Description

Name

'Pseudospectrum' Read-only character vector

1-457

1 Functions — Alphabetical List

Property

Default Value

Description

Frequencies

[]

type double

Vector of frequencies at which the power
spectral density is evaluated. The range of this
vector depends on the SpectrumRange value.
For half, the default range is [0, m) or [0, Fs/2)
for odd length, and [0,] or [0, Fs/2] for even
length, if F's is specified. For whole, it is [0, 2m)
or [0, Fs).

If you do not specify Frequencies, a default
vector is created. If half the Nyquist range is
selected, then the whole number of FFT points
(nFFT) for this vector is assumed to be even.

If half the Nyquist range is selected and you
specify Frequencies, the last frequency point
is compared to the next-to-last point and to
(or Fs/2, if Fs is specified). If the last point is
closer to 7 (or Fs/2) than it is to the previous
point, nFFT is assumed to be even. If it is

closer to the previous point, nFFT is assumed
to be odd.

The length of the Frequencies vector must
match the length of the columns of Data.

Fs

'Normalized'

Sampling frequency, which is 'Normalized'
if NormalizedFrequency is true. If
NormalizedFrequency is false Fs defaults
to 1.

SpectrumRange

'Half'

Nyquist interval over which the
pseudospectrum is calculated. Valid values are
"Half' and 'Whole'. See the half and
whole methods in dspdata for information on
changing this property.

The interval for Half is [0 7) or [0]
depending on the number of FFT points, and
for Whole the interval is [0 2m).

1-458

dspdata.pseudospectrum

Property

Default Value Description

NormalizedFrequency |true Whether the frequency is normalized (true) or

not (false). This property is set automatically
at construction time based on Fs. If Fs is
specified, NormalizedFrequency is set to
false. See the normalizefreq method in
dspdata for information on changing this
property.

Hps = dspdata.pseudospectrum(Data, Frequencies) uses the pseudospectrum
estimation data contained in the Data and Frequencies vectors.

Hps = dspdata.pseudospectrum(...,'Fs',6 Fs) uses the sampling frequency Fs.
Specifying Fs uses a default set of linear frequencies (in Hz) based on Fs and sets
NormalizedFrequency to false.

Hps = dspdata.pseudospectrum(..., 'SpectrumRange', SpectrumRange) uses
the SpectrumRange argument to specify the interval over which the pseudospectrum
was calculated. For data that ranges from [0) or [0], set the SpectrumRange to half;
for data that ranges from [0 2m), set the SpectrumRange to whole.

Hps = dspdata.pseudospectrum(..., 'CenterDC', flag) uses the value of flag to
indicate whether the zero-frequency (DC) component is centered. If flag is true, it
indicates that the DC component is in the center of the whole Nyquist range spectrum.
Set the flag to false if the DC component is on the left edge of the spectrum.

Methods

Methods provide ways of performing functions directly on your dspdata object. You can
apply a method directly on the variable you assigned to your dspdata.pseudospectrum
object. You can use the following methods with a dspdata.pseudospectrum object.

* centerdc

* halfrange

* normalizefreq

« plot

* wholerange

1-459

1 Functions — Alphabetical List

1-460

For example, to normalize the frequency and set the NormalizedFrequency parameter
to true, use

Hps = normalizefreq(Hps)

For detailed information on using the methods and plotting the pseudospectrum, see the
dspdata reference page.

Examples

Store and Plot Pseudospectrum Data

Use eigenanalysis to estimate the pseudospectrum of a noisy sinusoidal signal with two
frequency components.

Fs = 32e3;
t = 0:1/Fs:2.96;
X = cos (2*pi*t*1.24e3) + cos(2*pi*t*10e3) + randn(size(t));

P = pmusic(x,4);
Create a pseudospectrum data object to store the results. Plot the pseudospectrum.
hps = dspdata.pseudospectrum(P, 'Fs',Fs);

plot (hps)

dspdata.pseudospectrum

FPseudospectrum {dB)

100 T T
80 l
60 ||

a0 |

[
|
ZD:/
D_

|' l".

/
f,,//

i — _—

0 2 L

See Also

peig | pmusic

Introduced before R2006a

6 8 10 12 14
Frequency (kHz)

16

1-461

1 Functions — Alphabetical List

1-462

dspfwiz

Create Simulink filter block using Realize Model panel

Syntax

dspfwiz

Description

Note You must have the Simulink product installed to use this function.

dspfwiz opens Filter Designer with the Realize Model panel displayed.

Use other panels in Filter Designer to design your filter and then use the Realize Model
panel to create your filter as a subsystem block, which is a combination of Sum, Gain,
and Delay blocks, in a Simulink model.

If you also have the DSP System Toolbox software installed, you can create a Biquad

Filter block or a Discrete FIR Filter block instead of a subsystem block, by deselecting
the Build model using basic elements check box.

See Also

Apps

Filter Designer

Functions
dfilt

Introduced before R2006a

dtw

dtw

Distance between signals using dynamic time warping

Syntax

dist = dtw(x,V)
[dist,ix,iy] = dtw(x,Vy)

—
f—

dtw (x, y, maxsamp)

—
[

dtw (,metric)

Description

dist = dtw(x,y) stretches two vectors, x and y, onto a common set of instants such
that dist, the sum of the Euclidean distances between corresponding points, is smallest.
To stretch the inputs, dtw repeats each element of x and y as many times as necessary.
If x and y are matrices, then dist stretches them by repeating their columns. In that
case, x and y must have the same number of rows.

[dist,ix,iy] = dtw(x,y) returns the common set of instants, or warping path, such
that x(ix) and y(iy) have the smallest possible dist between them.

The vectors ix and iy have the same length. Each contains a monotonically increasing
sequence in which the indices to the elements of the corresponding signal, x or y, are
repeated the necessary number of times.

When x and y are matrices, ix and iy are such that x (:,ix) and y(:,1iy) are
minimally separated.

[] = dtw(x,y,maxsamp) restricts the warping path to be within maxsamp
samples of a straight-line fit between x and y. This syntax returns any of the output
arguments of previous syntaxes.

1-463

1 Functions — Alphabetical List

1-464

[] = dtw(,metric) specifies the distance metric to use in addition to any of
the input arguments in previous syntaxes.

dtw () without output arguments plots the original and aligned signals.

+ If the signals are real vectors, then the function displays the two original signals on a
subplot and the aligned signals in a subplot below the first one.

+ If the signals are complex vectors, then the function displays the original and aligned
signals in three-dimensional plots.

+ If the signals are real matrices, then the function displays the original and aligned
signals as images.

+ If the signals are complex matrices, then their real and imaginary portions appear in
the top and bottom half of each image.

Examples

Dynamic Time Warping of Chirp and Sinusoid

Generate two real signals: a chirp and a sinusoid.

X = cos(2*pi* (3*(1:1000)/1000).72);
y = cos (2*pi*9* (1:399)/400);

Use dynamic time warping to align the signals such that the sum of the Euclidean
distances between their points is smallest. Display the aligned signals and the distance.

dtw(x,y) s

dtw

Original Signals

Aligned Signals (Euclidean Distance: 21.593428)

v

05

0 100 200 300 400 500 600 VOO 800 900 1000

Change the sinusoid frequency to twice its initial value. Repeat the computation.

y = cos (2*pi*18*(1:399)/400);

dtw(x,v) ;

1-465

1 Functions — Alphabetical List

Drlglnal Signals

LA VY il

0 200 400 600 800 1000 1200

Add an imaginary part to each signal. Restore the initial sinusoid frequency. Use

dynamic time warping to align the signals by minimizing the sum of squared Euclidean
distances.

be
y

exp (2i*pi* (3*(1:1000)/1000) .72);
exp (2i*pi*9*(1:399)/400) ;

dtw(x,vy, "squared') ;

1-466

dtw

Original Signals

Align Writing Samples

g 0
E 4
.1
0, % ~ ~ \ = N
| 200 400 600 800 1000
rea
1, Aligned Signals (Squared Euclidean Distance: 2.113124)
G'E'\
8] 0
© M
E
—'IZI'.E.,"
1 [
!
1
o
4N Y v x S A

Devise a typeface that resembles the output of early computers. Use it to write the word

MATLAB®.

chr = @(x)dec2bin(x"')-48;

M = chr([34
A = chr([08
T = chr([62
L = chr([32

34
20
08
32

54
34
08
32

42
34
08
32

34
62
08
32

34
34
08
32

34]);
34]);
08]);
62]);

1-467

1 Functions — Alphabetical List

B = chr([60 34 34 60 34 34 60]);
MATLAB = [M A T L A BJ];

Corrupt the word by repeating random columns of the letters and varying the spacing.
Show the original word and three corrupted versions. Reset the random number
generator for reproducible results.

rng ('default")
c = @(x)x(:,s0ort([l:6 randi(6,1,3)1));

subplot(4,1,1, '"XLim', [0 607)
spy (MATLAB)

xlabel ('")

ylabel ('Original')

for kj = 2:4
subplot(4,1,kj, "XLim', [0 6017)
spy ([c(M) c(A) c(T) c(L) c(A) c(B)])
xlabel ('")
ylabel ('Corrupted")
end

1-468

dtw

= vvere .« ever

o . . = o . . . s e .

= s w% ®

T | e s . . . s ssss

= 5= “ sssas . . sasss .
. - .

@] . . s . . sssss = s sass

o=

=

E :-: :: -I- I‘II‘:I‘II :: -I‘I ::‘II-II‘-
ﬂ_ - e L) - . - L - . L] - . - . L
EE—I" L R R EEEE L L FEERERE L L -
=] e eoas . : . S

[] i

]

E . . o Pearasaae s L seeaie

[« s sawaw . . " - .a se wmaw "
=] . e s . . Ceseaaes ea N
[1

ED :- ::- T -III- ILI:IIII : T R L :III-II-

G_ - e L) - . - L - L] LI - . - .
E = ! :: :I'.I'II'I:' : : :'ll'll:l: ::-.-.'ll—
55 . eoas . : esesaas s er iieess
[] i i i i i

0 10 20 30 40 50

Generate two more corrupted versions of the word. Align them using dynamic time
warping.

one = [c(M) c(A) c(T) c(L) c(A) c(B)];

two = [c(M) c(A) c(T) c(L) c(Ad) c(B)I;
[ds,ix,iy] = dtw(one,two);

onewarp = one(:,1ix);

twowarp = two(:,1y);

Display the unaligned and aligned words.

1-469

1 Functions — Alphabetical List

1-470

figure

subplot(4,1,1)
spy (one)
xlabel ('")
ylabel ('one')

subplot (4,1, 2)
spy (two, "r'")
xlabel ('")
ylabel ("two')

subplot (4,1, 3)
spy (onewarp)
xlabel ('")

ylabel ('onewarp')

subplot (4,1, 4)
spy (twowarp, 'r')
xlabel ('")

ylabel ('twowarp')

dtw

- - - .
- LR -
- [EE R RN
- LR -
EEE R LR -

s & & &
" L] LR "
& W R [
g 5 ®] L] 5
- B EEEEEE R
‘-'5 B § W [B
= L] [] =

EE @ &
- L] "
- w
-] L]
« amaawaw
[# &
EEEEEEE W L]

onewarp
n
T

o

twowarp
n

Repeat the computation using the built-in functionality of dtw.

dtw (one, two) ;

1471

1 Functions — Alphabetical List

Euclidean Distance: 0.000000
Original Signal (X) Aligned Signal (X)

30 40 50
Original Signal (Y) Aligned Signal (Y)

10 20 30 40 50 10 20 30 40 50 60
Overlaid Original Signals Overlaid Aligned Signals

Constrained Warping Path

Generate two signals consisting of two distinct peaks separated by valleys of different
lengths. Plot the signals.

x1
X2

[
[

00O0O01O0]*.95;

00
*.95;

01000
01010

]
subplot(2,1,1)

plot (x1)
x1l = xlim;

1-472

dtw

subplot(2,1,2)

plot (x2)
x1lim(x1)

0.5
{
12

0.5
{
12 14

0
Align the signals with no restriction on the warping path. To produce perfect alignment,

the function needs to repeat only one sample of the shorter signal.

figure
dtw (x1,x2);
1-473

1 Functions — Alphabetical List

1-474

Original Signals

1] .
A A
."ll "'". ."' ' ."-.'
D. 5 B l,-" "'.._ .-" .
! Voo Y
/ ‘i \
0 i 1 W \ L |] 1
0 2 4 G a 10 12 14
Aligned Signals (Euclidean Distance: 0.000000)
1 T T T T T T
| i
II I: |I Il
0.8 I [_
| 1 | 1
I| |I II |I
| 1 | 1
0.6 II I| |I Il T
|I I| |I Il
| | | |
I| II II ll
0.4 | \ { | 7
| | | 1
f | f |
D. 2 | II| |II II| 'II _
III II: |II IIl
D i i i i i i i i !
0 2 4 G 8 10 12 14

Plot the warping path and the straight-line fit between the two signals. To achieve
alignment, the function expands the trough between the peaks generously.

[d,11,i2] = dtw(x1l,x2);

figure
plot(il,1i2,'o-", [11(1) il(end)], [12(1) i2(end)])

dtw

Repeat the computation, but now constrain the warping path to deviate at most three
elements from the straight-line fit. Plot the stretched signals and the warping path.

[de,1ilc,1i2c] = dtw(x1l,x2,3);

subplot(2,1,1)

plot ([x1(ilc);x2(i2c)]1"',".-")

title(['Distance: ' num2str(dc)])

subplot(2,1,2)

plot(ilc,i2c, 'o-", [11(1) il(end)],[12(1) i2(end)])

1-475

1 Functions — Alphabetical List

Distance: 1.9
1 T T
A \ f \
II III II IIl III
| | | [
) Ilu I|I IIl 1
0.5 ' [_
II 1 II III 1
I|II \ IIII II 1
0 / i 1 | / \
0 2 4 G a 10 12 14
5
4r N
ar = = _ﬁ .\-r" = N
2r i
G a 10 12 14

0
The constraint precludes the warping from concentrating too much on a small subset of
samples, at the expense of alignment quality. Repeat the calculation with a one-sample

constraint.

dtw (x1,x2,1);

1-476

dtw

Original Signals
1 T _|'_ T T T
N\ AN
AN FAY
051 ,.-" "'"'... ! '-.".' s
/ \ / \
0 i 1 W \ L |] 1
0 2 4 6 a8 10 12 14
Aligned Signals (Euclidean Distance: 7.600000)
1 *I | T I T T T I ﬁl
0.8 | | \ / f |\ .
06 [" " \/ \ -
0.4 r | -'I'\‘ II' 'II |:'
X | f ! | f I: -1
0.2 I." I". ." _
| f \ H E | |
D | III II| i Il il i |I \ III
0 2 4 6 a8 10 12 14

Dynamic Time Warping of Speech Signals
Load a speech signal sampled at F,=T418 Hx. The file contains a recording of a female
voice saying the word "MATLAB®."

load mtlb
type soundsc (mtlb, Fs)

% To hear,

1-477

1 Functions — Alphabetical List

Extract the two segments that correspond to the two instances of the /@/ phoneme. The
first one occurs roughly between 150 ms and 250 ms, and the second one between 370 ms
and 450 ms. Plot the two waveforms.

al
az

mtlb (round (0.15*Fs) :round (0.25*Fs)) ;
mtlb (round (0.37*Fs) :round (0.45*Fs)) ;

subplot(2,1,1)

plot ((0:numel (al)-1)/Fs+0.15,al)
title('a 1")

subplot(2,1,2)

plot ((0:numel (a2)-1) /Fs+0.37,a2)
title('a 2")

xlabel ('Time (seconds) ")

0.14 0.16 0.18 0.2 0.22 0.24 0.26

=
0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45

Time (seconds)

1-478

dtw

% To hear, type soundsc(al,Fs),

soundsc (a2, Fs)

Warp the time axes so that the Euclidean distance between the signals is minimized.

Compute the shared "duration" of the warped signals and plot them.

[d,11,1i2] = dtw(al,a2);

alw = al(il);
azw = a2 (i2);

t = (0:numel (il)-1)/Fs;
duration = t (end)

duration = 0.1297

subplot(2,1,1)
plot(t,alw)

title('a 1, Warped'")
subplot(2,1,2)

plot (t,a2w)

title('a 2, Warped'")
xlabel ('Time (seconds) ")

1-479

1 Functions — Alphabetical List

a,, Warped
d Lk |
KPP b
0 0.02 0.04 DaE:E!'r war;:'ﬂ 0.1 0.12 0.14
oo
0 M | f M’IJ” | WH I |‘f H" MM l | -\frHL i My
4 | | _

Time (seconds)

% To hear, type soundsc(alw,Fs), pause(l), sound(a2w,Fs)

Repeat the experiment with a complete word. Load a file containing the word "strong,"
spoken by a woman and by a man. The signals are sampled at 8 kHz.

load(fullfile (matlabroot, 'examples', 'signal', 'strong.mat"'))
% To hear, type soundsc (her,fs), pause(2), soundsc (him, fs)

Warp the time axes so that the absolute distance between the signals is minimized. Plot
the original and transformed signals. Compute their shared warped "duration."

dtw (her, him, "absolute');
legend ('her', "him'")

1-480

dtw

Original Signals

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Aligned Signals (Absolute Distance: 163.663272)

0 1000 2000 3000 4000 5000 6000 7000

[d,iher,ihim] = dtw(her,him, "absolute');
duration = numel (iher)/fs

duration = 0.8394

% To hear, type soundsc (her (iher),fs), pause(2),

°

soundsc (him(ihim), fs)

1-481

1 Functions — Alphabetical List

£E888 2888

E8588

1-482

Dynamic Time Warping for Handwriting Alignment

The files MATLAB1 .gif and MATLAB2.gif contain two handwritten samples of the word
"MATLAB®." Load the files and align them along the x-axis using dynamic time
warping.

sampl = fullfile(matlabroot, 'examples', 'signal', "MATLABL.gif'");
samp?2 fullfile (matlabroot, 'examples', 'signal', "MATLAB2.gif'");

x = double (imread (sampl)) ;
y = double (imread (samp2)) ;

dtw(x,vV) ;
Euclidean Distance: 105656.932801
Original Signal (X) Aligned Signal (X)
20
40
60
80
50 100 150 200 250 300 50 100 450 200 250 300
Original Signal (Y) Aligned Signal (Y)
20 i
40
60
80
50 100 150 200 250 300 50 100 150 200 250 300
Overlaid Original Signals Overlaid Aligned Signals

Bk

388Y

50 100 150 200 250 300 50 100 150 200 250 300

dtw

Input Arguments

x — Input signal

vector | matrix

Input signal, specified as a real or complex vector or matrix.

Data Types: single | double
Complex Number Support: Yes

y — Input signal
vector | matrix
Input signal, specified as a real or complex vector or matrix.

Data Types: single | double
Complex Number Support: Yes

maxsamp — Width of adjustment window
Inf (default) | positive integer

Width of adjustment window, specified as a positive integer.
Data Types: single | double

metric — Distance metric
'euclidean' (default) | 'absolute' | 'squared' | 'symmkl'

Distance metric, specified as 'euclidean', 'absolute', 'squared', or 'symmkl'. If
X and Y are both K-dimensional signals, then metric prescribes d,,,(X,Y), the distance
between the mth sample of X and the nth sample of Y. See “Dynamic Time Warping” on
page 1-484 for more information about d,,,X,Y).

*+ 'euclidean' — Root sum of squared differences, also known as the Euclidean or ¢,
metric:
K .
4 XD = S5, ()
k=1
+ 'absolute' — Sum of absolute differences, also known as the Manhattan, city block,
taxicab, or ¢; metric:
K K ”
S e
=1 =1

1-483

1 Functions — Alphabetical List

1-484

* 'squared' — Square of the Euclidean metric, consisting of the sum of squared

differences:
K *

dmn (X’Y) = Z(xk,m - yk,n) (xk,m - yk,n)

k=1

+ 'symmkl' — Symmetric Kullback-Leibler metric. This metric is valid only for real

and positive X and Y:
K
dmn (X’Y) = Z (xk,m ~Yen)(logxk,m - logyk,n)

k=1

Data Types: char

Output Arguments

dist — Minimum distance
positive real scalar

Minimum distance between signals, returned as a positive real scalar.

ix — Warping path for first signal

vector of indices | matrix of indices
Warping path for first signal, returned as a vector or matrix of indices.

iy — Warping path for second signal
vector of indices | matrix of indices

Warping path for second signal, returned as a vector or matrix of indices.

Definitions

Dynamic Time Warping

Two signals with equivalent features arranged in the same order can appear very
different due to differences in the durations of their sections. Dynamic time warping
distorts these durations so that the corresponding features appear at the same location
on a common time axis, thus highlighting the similarities between the signals.

dtw

Consider the two K-dimensional signals

X110 Xg vt Xy

Xo1 Xgo v Xoy
X=| 7 DT ;

| ¥xk1 Xke 0 Xk |
and

Y1 Y2 0 Yun

Yo1 Yoo 0 Yo
Y=|"7 R 2,

| Yk1 JYk2 0 YEN |

which have M and N samples, respectively. Given d,,,(X,Y), the distance between the
mth sample of X and the nth sample of Y specified in metric, dist stretches X and Y
onto a common set of instants such that a global signal-to-signal distance measure is
smallest.

Initially, the function arranges all possible values of d,,,,(X,Y) into a lattice of the form

din oo dun
dmn

diz doo

di1 Oy oo w1

Then dist looks for a path through the lattice—parameterized by two sequences of the
same length, ix and iy—such that

d=Yd,XY)

meix

neiy

1-485

1 Functions — Alphabetical List

is minimum. Acceptable di st paths start at d;(X,Y), end at dynX,Y), and are
combinations of “chess king” moves:

* Vertical moves: (m,n) — (m + 1,n)

* Horizontal moves: (m,n) — (m,n + 1)

* Diagonal moves: (m,n) —» (m + 1,n + 1)

This structure ensures that any acceptable path aligns the complete signals, does not
skip samples, and does not repeat signal features. Additionally, a desirable path runs
close to the diagonal line extended between d;;(X,Y) and d;»(X,Y). This extra constraint,

adjusted by the maxsamp argument, ensures that the warping compares sections of
similar length and does not overfit outlier features.

This is a possible path through the lattice:

din oo dun
dmn
diz dbo
di1 Ooy oo dw
References

[1] Sakoe, Hiroaki, and Seibi Chiba. “Dynamic Programming Algorithm Optimization for
Spoken Word Recognition.” IEEE Transactions on Acoustics, Speech, and Signal
Processing. Vol. ASSP-26, No. 1, 1978, pp. 43—49.

[2] Paliwal, K. K., Anant Agarwal, and Sarvajit S. Sinha. “A Modification over Sakoe and

Chiba’s Dynamic Time Warping Algorithm for Isolated Word Recognition.”
Signal Processing. Vol. 4, 1982, pp. 329-333.

1-486

dtw

See Also

alignsignals | edr | finddelay | findsignal | xcorr

Introduced in R2016a

1-487

1 Functions — Alphabetical List

1-488

dutycycle

Duty cycle of pulse waveform

Syntax

D = dutycycle (X)

D = dutycycle (X, FS)

D = dutycycle (X, T)

D = dutycycle (TAU, PRF)

[D, INITCROSS] = dutycycle(X,...)

[D, INITCROSS, FINALCROSS] = dutycycle(X,...)

[D, INITCROSS, FINALCROSS, NEXTCROSS] = dutycycle(X,...)

[D, INITCROSS, FINALCROSS, NEXTCROSS,MIDLEV] = dutycycle (X, ...)

[D, INITCROSS, FINALCROSS, NEXTCROSS] = dutycycle (X, ...,Name,Value)
dutycycle (X, ...)

Description

D = dutycycle (X) returns the ratio of pulse width to pulse period for each positive-
polarity pulse. D has length equal to the number of pulse periods in X. The sample
instants of X correspond to the indices of X. To determine the transitions that define each
pulse, dutycycle estimates the state levels of the input waveform by a histogram
method. dutycycle identifies all regions, which cross the upper-state boundary of the
low state and the lower-state boundary of the high state. The low-state and high-state
boundaries are expressed as the state level plus or minus a multiple of the difference
between the state levels. See “State-Level Tolerances” on page 1-497.

D = dutycycle (X, FS) specifies the sampling frequency, FS, in hertz as a positive
scalar. The first sample instant of X corresponds to t=0.

D = dutycycle (X, T) specifies the sample instants, T, as a vector with the same
number of elements as X.

dutycycle

D = dutycycle (TAU, PRF) returns the ratio of pulse width to pulse period for a pulse
width of TAU seconds and a pulse repetition frequency of PRF. The product of TAU and
PRF must be less than or equal to 1.

[D, INITCROSS] = dutycycle (X, ...) returns a vector, INITCROSS, whose elements
correspond to the mid-crossings (mid-reference level instants) of the initial transition of
each pulse with a corresponding NEXTCROSS.

[D, INITCROSS, FINALCROSS] = dutycycle (X, ...) returns a vector, FINALCROSS,
whose elements correspond to the mid-crossings (mid-reference level instants) of the final
transition of each pulse with a corresponding NEXTCROSS.

[D, INITCROSS, FINALCROSS,NEXTCROSS] = dutycycle (X, ...) returns a vector,
NEXTCROSS, whose elements correspond to the mid-crossings (mid-reference level
instants) of the next detected transition for each pulse.

[D, INITCROSS, FINALCROSS, NEXTCROSS, MIDLEV] = dutycycle (X, ...) returns
the mid-reference level, MIDLEV. Because in a bilevel pulse waveform the state levels are
constant, MIDLEV is a scalar.

[D, INITCROSS, FINALCROSS,NEXTCROSS] = dutycycle(X,...,Name,Value)
returns the ratio of pulse width to pulse period with additional options specified by one or
more Name, Value pair arguments.

dutycycle (X, ...) plots the waveform, X, and marks the location of the mid-reference

level instants and the associated reference levels. The state levels and associated lower
and upper state boundaries are also plotted.

Input Arguments

X

Bilevel waveform. X is a real-valued row or column vector.
FS

Sample rate in hertz.

1-489

1 Functions — Alphabetical List

1-490

T

Vector of sample instants. The length of T must equal the length of the bilevel waveform,
X.

TAU
Pulse width in seconds. The product of TAU and PRF must be less than or equal to 1.
PRF

Pulse repetition frequency in pulses/second. The product of TAU and PRF must be less
than or equal to 1.

Name-Value Pair Arguments

MidPercentReferencelevel

Mid-reference level as a percentage of the waveform amplitude.

Default: 50

Polarity

Pulse polarity. Specify the polarity as 'positive' or 'negative’'. If you specify
'positive', dutycycle looks for pulses with positive-going (positive polarity) initial
transitions. If you specify 'negative', dutycycle looks for pulses with negative-going

(negative polarity) initial transitions. See “Pulse Polarity” on page 1-497 for examples of
positive and negative-polarity pulses.

Default: 'positive’

Statelevels

Low- and high-state levels. StateLevels is a 1-by-2 real-valued vector. The first
element is the low-state level. The second element is the high-state level. If you do not

specify low- and high-state levels, dutycycle estimates the state levels from the input
waveform using the histogram method.

dutycycle

Tolerance

Tolerance levels (lower- and upper-state boundaries) expressed as a percentage. See
“State-Level Tolerances” on page 1-497.

Default: 2

Output Arguments
D

Duty cycle. Duty cycle is the ratio of the pulse width to the pulse period. Because the
pulse width cannot exceed the pulse period, 0<D <1.

INITCROSS

Mid-reference level instant of initial transition. Because the duty cycle is defined as the
ratio of pulse width to pulse period, initial transitions are only reported when
dutycycle finds a corresponding NEXTCROSS.

FINALCROSS

Mid-reference level instant of final transition. The duty cycle is defined as the ratio of
pulse width to pulse period. Thus, final transitions are only reported when dutycycle
finds a corresponding NEXTCROSS.

NEXTCROSS

Mid-reference level instant of the first initial transition after the final transition of the
preceding pulse.

MIDLEV

Mid-reference level. The waveform value that corresponds to the mid-reference level.

Examples

1-491

1 Functions — Alphabetical List

Duty Cycle of Bilevel Waveform

Determine the duty cycle of a bilevel waveform. Use the vector indices as the sample
instants.

load('pulseex.mat', 'x")

d = dutycycle (x)

d = 0.3001

Annotate the result on a plot of the waveform.

dutycycle (x) ;

signal

* mid cross

B L g upper boundary

| ---------- upper state
lower boundary

— — —mid reference
upper boundary

---------- lower state

lower boundary

Level (WVolts)

|
|
|
|
|
|
|

X
|
|
)&
|
|
|
|
|
|
|
e

| |
| . |-
|' | |
i ——
! I5 ‘lIEI' ‘lIE ZIEI' ZIE Z]-IEI'

Time (seconds)

1-492

dutycycle

Duty Cycle of Bilevel Waveform with Sample Rate

Determine the duty cycle of a bilevel waveform. The sample rate is 4 MHz.

load('pulseex.mat', 'x','t")
fs = 1/(t(2)-t(1));

d

dutycycle (x, fs)

d = 0.3001

Annotate the result on a plot of the waveform.

dutycycle (x,£fs);

1-493

1 Functions — Alphabetical List

6 I I I I signal
* mid cross
[upper boundary
| ---------- upper state
| lower boundary
at | J — — —mid reference
| | | upper boundary
""""" | tat
7| - o
S |
o ko N
T ér | |
& 27 | 1
= | | |
i| | | !
| | |
) SR P —
L Er e

Time (seconds) %1078

Duty Cycle of Bilevel Waveform with Three Pulses

Create a pulse waveform with three pulses. The sample rate is 4 MHz. Determine the
initial and final mid-reference level instants. Plot the result.

load('pulseex.mat', 'x")
fs = 4e6;

pulse = x(1:30);

wavef = [pulse;pulse;pulse];
t = (0:length(wavef)-1)/fs;

1-494

dutycycle

[~,initcross, finalcross,~,midlev] = dutycycle (wavef,t)
initcross =

1.0e-04 *

0.0312

0.1062
finalcross =

1.0e-04 *

0.0463

0.1213

midlev = 2.5177

Even though there are three pulses, only two pulses have corresponding subsequent
transitions. Plot the result.

plot (t,wavef)

hold on

plot([initcross finalcross],midlev*ones(2), 'x', 'markersize',10)
hold off

legend ('Waveform', 'Initial’', 'Final', 'Location', 'best")

1-495

1 Functions — Alphabetical List

'Er T T T T
5 - —— e N .
[[1
‘Waveform
ar % Initial 1
Final
Al | _
2r i
1r i
D T |~-.J~———d——x,—.d_~r"v L-_.a—— T P 4
_1 1 1 1 1
0 0.5 1 15 2 25
%107
Definitions
Duty Cycle

The energy in a bilevel, or rectangular, pulse is equal to the product of the peak power,
P,, and the pulse width, 7. Devices to measure energy in a waveform operate on time
scales longer than the duration of a single pulse. Therefore, it is common to measure the
average power

Pz
P, =t
av T ’

1-496

dutycycle

where T is the pulse period.

The ratio of average power to peak power is the duty cycle:
Pt/T
P

t

D=

Pulse Polarity

If the pulse has a positive-going initial transition, the pulse has positive polarity. The
following figure shows a positive polarity pulse.

Equivalently, a positive-polarity (positive-going) pulse has a terminating state more
positive than the originating state.

If the pulse has a negative-going initial transition, the pulse has negative polarity. The
following figure shows a negative-polarity pulse.

Equivalently, a negative-polarity (negative-going) pulse has a originating state more
positive than the terminating state.

State-Level Tolerances

Each state level can have associated lower- and upper-state boundaries. These state
boundaries are defined as the state level plus or minus a scalar multiple of the difference

1-497

1 Functions — Alphabetical List

1-498

between the high state and the low state. To provide a useful tolerance region, the scalar

is typically a small number such as 2/100 or 3/100. In general, the &% region for the low

state is defined as

¥
5, = Sa— 5
| IU{}L 2 1),

where 51 is the low-state level and 5% is the high-state level. Replace the first term in the
equation with 52 to obtain the «% tolerance region for the high state.

The following figure illustrates lower and upper 2% state boundaries (tolerance regions)
for a positive-polarity bilevel waveform. The red dashed lines indicate the estimated
state levels.

dutycycle

Volts

State Levels -+ 2% Tolerance

2.5 T T T T T T T T T
:::::::::::::::IRE/:E:—;;E;;r_E—:-*
2r | i
1.5 4
ir 4
|
0.5 | 4
|
D:—z;—:._—_;_:f‘f' _x___:—-_,—_/gth:::::::::::::..
0.5 ' : : ! : . L . L
0 1 2 3 & 5 G 7 8 9
Seconds <1078
References

[1] Skolnik, M. 1. Introduction to Radar Systems. New York, NY: McGraw-Hill, 1980.

[2] IEEE Standard on Transitions, Pulses, and Related Waveforms. IEEE Standard 181,
2003.

See Also

midcross | pulseperiod | pulsesep | pulsewidth

1-499

1 Functions — Alphabetical List

Introduced in R2012a

1-500

edr

edr

Edit distance on real signals

Syntax

dist = edr(x,y,tol)
[dist,ix,1iy] = edr(x,y,tol)

[] = edr(x,y,maxsamp)

—
-

edr (,metric)

Description

dist = edr (x,y,tol) returns the “Edit Distance on Real Signals” on page 1-513
between sequences x and y. edr returns the minimum number of elements that must be
removed from x, y, or both x and y, so that the sum of Euclidean distances between the
remaining signal elements lies within the specified tolerance, tol.

[dist,ix,iy] = edr(x,y,tol) returns the warping path such that x(ix) and y(iy)
have the smallest possible dist between them. When x and y are matrices, ix and iy
are such that x (:,ix) and y (:, iy) are minimally separated.

[] = edr (x,y,maxsamp) restricts the insertion operations so that the warping
path remains within maxsamp samples of a straight-line fit between x and y. This syntax
returns any of the output arguments of previous syntaxes.

[] = edr(,metric) specifies the distance metric to use in addition to any of
the input arguments in previous syntaxes. metric can be one of 'euclidean’,
'absolute', 'squared', or 'symmkl"'.

edr () without output arguments plots the original and aligned signals.

1-501

1 Functions — Alphabetical List

1-502

+ If the signals are real vectors, then the function displays the two original signals on a
subplot and the aligned signals in a subplot below the first one.

+ If the signals are complex vectors, then the function displays the original and aligned
signals in three-dimensional plots.

+ If the signals are real matrices, then the function displays the original and aligned
signals as images.

+ If the signals are complex matrices, then the real and imaginary portions of the
signals appear in the top and bottom half of each image.

Examples

Edit Distance Between Chirp and Sinusoid with Outliers

Generate two real signals: a chirp and a sinusoid. Add a clearly outlying section to each
signal.

X = cos(2*pi* (3*(1:1000)/1000).72);
y = cos (2*pi*9*(1:399)/400);

x(400:410) = 7;

y(100:115) = 7;

Warp the signals so that the edit distance between them is smallest. Specify a tolerance
of 0.1. Plot the aligned signals, both before and after the warping, and output the
distance between them.

tol = 0.1;
edr (x,y,tol)

ans = 617

edr

1 D T T T

_1 D i i i i i i i i i
0 100 200 300 400 500 600 VOO 8OO 900 1000

of] |

0 100 200 300 400 500 600 VOO 800 900 1000

Change the sinusoid frequency to twice its initial value. Repeat the computation.

y = cos (2*pi*18*(1:399)/400);
y(100:115) = 7;

edr (x,y,tol);

1-503

1 Functions — Alphabetical List

Original Signals
T T T

1 D T T T

_1 D i i i i i i i
0 100 200 300 400 500 600 VOO 8OO 900 1000

Aligned Signals (Edit Distance: 774)

0 100 200 300 400 500 600 VOO 800 900 1000

Add an imaginary part to each signal. Restore the initial sinusoid frequency. Align the
signals by minimizing the sum of squared Euclidean distances.

x = exp (2i*pi* (3*(1:1000)/1000)."2);

y = exp(21i*pi*9*(1:399)/400);
x(400:405) = 5+437;

x(405:410) = 7;

v (100:107) = 33j;

y(108:115) = 7-33;

edr (x,y,tol, 'squared");

1-504

edr

Original Signals

5
g 7
E 5
10
Ky 8 ~ ~ ~ = N,
0 200 400 600 800 1000
real
3, Aligned Signals (Edit Distance: 617)
()]
[y
£
\
real 0 200 400 600 800 1000

Edit Distance and Warping Path

Generate two signals consisting of two distinct peaks separated by valleys of different

lengths. Plot the signals.
x1l = []

.95
x2 = [0

0101071~ ;

01 000O0O 0001O0]*.95;
subplot(2,1,1)

plot (x1)

x1im ([0 127)

1-505

1 Functions — Alphabetical List

subplot(2,1,2)
plot (x2)
x1lim ([0 127)
1 T
{ /
f /
{ /
0.5 / / -
/ /
/ /
f f
5 / .
0 2 4 6 8 10 12
1 T
f
[/
/ f
/ /
0.5 / / .
/ /
|Illl "ll
/ /
0 !)) /
2 4 6 8 10 12

0
Compute the edit distance between the signals. Set a small tolerance so that the only

matches are between equal samples

tol = 0.1;

figure
edr (x1,x2,tol);

1-506

edr

Original Signals
1 J.l.' T T ,‘\
7 ‘_\ ,-"'f \
0.5 /N /N
/ Y / \
. / ",
0 i 1 M, | L |."'r
0 2 4 G a8 10 12
Aligned Signals (Edit Distance: 7)
1 T T T T T
|'l'. F'
0.8 T
D'Er B |II II'I |II IIlI N
0.4 .' | 1
Ill L1 I|II I'.
021
0 | \ | L | I
0 2 4 G] 10 12

The distance between the signals is 7. To align them, it is necessary to remove the seven

central zeros of x2 or add seven zeros to x1.
Compute the D matrix, whose bottom-right element corresponds to the edit distance. For

the definition of D, see “Edit Distance on Real Signals” on page 1-513.

(abs (x1'-x2))>tol;
zeros (length (x1) +1, length (x2)+1) ;

cnd =
D =
D(l,2:end) = l:length(x2);
D(2:end,1l) = l:length(xl);
for h = 2:1length(x1l)+1
for k = 2:1length(x2)+1
= min([D(h-1,k)+1 ...
1-507

D (h, k)

1 Functions — Alphabetical List

1-508

D(h,k-1)+1
D(h-1,k-1)+cnd (h-1,%k-1)1);
end
end
D
D =
0 1 2 3 4 5 6 I 8 9 10 11
1 0 1 2 3 4 5 6 7 8 9 10
2 1 0 1 2 3 4 5 6 7 8 9
3 2 1 0 1 2 3 4 5 6 7 8
4 3 2 1 1 2 3 4 5 6 7 7
5 4 3 2 1 1 2 3 4 5 6 7
Compute and display the warping path that aligns the signals.
[d,11,12] = edr(x1,x2,tol);
E = zeros(length(xl),length(x2));
for k = 1l:length(il)
E(il(k),1i2(k)) = NaN;
end
E
E =
NaN 0 0 0 0 0 0 0 0 0 0 0
0 NaN 0 0 0 0 0 0 0 0 0 0
0 0 NaN NaN NaN NaN NaN NaN NaN NaN 0 0
0 0 0 0 0 0 0 0 0 0 NaN 0
0 0 0 0 0 0 0 0 0 0 0 NaN

Repeat the computation, but now constrain the warping path to deviate at most two
elements from the diagonal. Plot the stretched signals and the warping path. In the
second plot, set the matrix columns to run along the x-axis.

[dc,ilc,i2c] = edr(x1l,x2,tol,2);

subplot(2,1,1)

12
11
10

edr

plot ([x1(ilc);x2(i2c)]1"',".-")
' num2str (dc)])

title(['Distance:
subplot(2,1,2)
plot(i2c,ilc, 'o-",[12(1) i2(end)],[11(1) il(end)])
axis 17
title ('Warping Path')
Distance: 5
1 .'If, " T T T r L I’.
A / [\
[{ {
/ ! /o
/ f /
D. 5 B |II IlIl l'll -
.'II \ .'I ,l'
/ f /
! / i
f L / i
D n'l 1 i 1 fll III
0 2 4 5] 8 10 12
1 T T
2r i
ar i
4 F i
5 i i i i i - e _‘D
0 2 4 G 8 10 12

The constraint results in a smaller edit distance but distorts the signals. If the constraint
cannot be met, then edr returns NaN for the distance. See this by forcing the warping

path to deviate at most one element from the diagonal.

edr (x1,x2,tol,1);

[dc,ilc,i2c]
1-509

subplot(2,1,1)

1 Functions — Alphabetical List

plot ([x1(ilc);x2(i2c)]1"',".-")
title(['Distance: ' num2str(dc)])
subplot(2,1,2)
plot(i2c,ilc, 'o-",[12(1) i2(end)],[11(1) il(end)])
axis 17
title ('Warping Path')
Distance: NaN
1] : . :
/ / [\
f / /
/ / f
/ :
a1 / { | b
i [/
|I| Il|I I|'I
/ / /
| f
0 / { '
0 2 4 G 8 10 12
1 . = waarp'%g Pa%h
2 L — .
3 o -~ .
4 - B -
5 i L 'O
0 2 4 5] 8 10 12

Align Blotched Handwriting Samples

The files MATLAB1 .gif and MATLAB2.gif contain two handwritten samples of the word
"MATLAB®." Load the files. Add outliers by blotching the data.

1-510

edr

sampl = fullfile(matlabroot, 'examples', 'signal', "MATLABl.gif");
samp2 fullfile(matlabroot, 'examples', 'signal', "MATLAB2.gif");

x = double (imread (sampl));
y = double (imread (samp2)) ;

x(15:20,54:60) = 4000;
y(15:20,84:96) = 4000;

Align the handwriting samples along the x-axis using the edit distance. Specify a
tolerance of 450.

edr (x,vy,450);

Edit Distance: 109
Original Signal (X) Aligned Signal (X)

50 100 150 200 250 300 50 100 150 200 250 300
Original Signal (Y) Aligned Signal (Y)

50 100 150 200 250 300 50 100 150 200 250 300
Overlaid Original Signals Overlaid Aligned Signals

50 100 150 200 250 300 50 100 150 200 250 300

1-511

1 Functions — Alphabetical List

1-512

Input Arguments

x — |nput signal
vector | matrix

Input signal, specified as a real or complex vector or matrix.

Data Types: single | double
Complex Number Support: Yes

y — Input signal
vector | matrix

Input signal, specified as a real or complex vector or matrix.

Data Types: single | double
Complex Number Support: Yes

tol — Tolerance
positive scalar
Tolerance, specified as a positive scalar.

Data Types: single | double

maxsamp — Width of adjustment window
Inf (default) | positive integer

Width of adjustment window, specified as a positive integer.
Data Types: single | double

metric — Distance metric
'euclidean' (default) | 'absolute' | 'squared' | 'symmkl'

Distance metric, specified as 'euclidean', "absolute', 'squared’', or 'symmkl'. If
X and Y are both K-dimensional signals, then metric prescribes d,,,(X,Y), the distance
between the mth sample of X and the nth sample of Y.

*+ 'euclidean' — Root sum of squared differences, also known as the Euclidean or ¢,
metric:
K *
dmn (X;Y) = J;(xk,m ~ Yen) (xk,m - yk,n)
=1

edr

* 'absolute' — Sum of absolute differences, also known as the Manhattan, city block,
taxicab, or £; metric:

K K i
dmn(X’Y) = 2|xk,m _yk,n = \/(xk,m _yk,n) (xk,m _yk,n)
k=1 k=1
* 'squared' — Square of the Euclidean metric, consisting of the sum of squared
differences:
K *
dmn (X’Y) = Z(‘xk,m - yk,n) (xk,m - yk,n)
k=1
* 'symmkl' — Symmetric Kullback-Leibler metric. This metric is valid only for real

and positive X and Y:

K
dmn (X7Y) = z(xk,m - yk,n)(logxk,m - logyk,n)
k=1

Data Types: char

Output Arguments

dist — Minimum distance
positive real scalar

Minimum distance between signals, returned as a positive real scalar.

ix, iy — Warping path

vectors of indices

Warping path, returned as vectors of indices. ix and iy have the same length. Each
vector contains a monotonically increasing sequence in which the indices to the elements
of the corresponding signal, x or y, are repeated the necessary number of times.

Definitions

Edit Distance on Real Signals

Two signals with equivalent features arranged in the same order can appear very
different due to differences in the durations of their sections. edr distorts these

1-513

1 Functions — Alphabetical List

1-514

durations so that the corresponding features appear at the same location on a common
time axis, thus highlighting the similarities between the signals. The criterion used to
perform the distortion is designed to be robust to outliers.

Consider the two K-dimensional signals

X110 Xg vt Xy
Xo1 Xgo v Xoy
X=| 7 DT ;
| ¥x1 Ykp XK.M |
and
Y11 Ve YN
Yo1 Yoo Yo N
Y — 2 . ,
| Yk1 JYk2 0 YEN |

which have M and N samples, respectively. Given d,,,(X,Y), the distance between the
mth sample of X and the nth sample of Y specified in metric, the edr function stretches
X and Y onto a common set of instants such that the edit distance between the signals is
smallest.

Given &, a real number that is the tolerance specified in tol, declare that the mth sample
of X and the nth sample of Y match if d,,,X,Y) < e. If two samples, m and n, do not
match, you can make them match in any of three ways:

1 Remove m from the first signal, such as when the next sample does match n. This
removal is equivalent to adding m to the second signal and obtaining two consecutive
matches.

2 Lengthen the first signal by adding in position a sample that matches n and
displacing the rest of the samples by one location. This addition is equivalent to
removing the unmatched n from the second signal.

3 Substitute m with n in the first signal, or, equivalently, remove both m and n.

The edit distance is the total number of these operations that are needed to make the two
signals match. This number is not unique. To compute the smallest possible edit distance
between X and Y, start from these facts:

1 Two empty signals have zero distance between them.

edr

2 The distance between an empty signal and a signal with L samples is L, because that
is the number of samples that must be added to the empty signal to recover the other
one. Equivalently, L is the number of samples that must be removed from an L-
sample signal to empty it.

Create an (M + 1)-by-(IN + 1) matrix, D, such that:

1 D;;=0.
2 D,,=m-1form=2,...,M+1.
3 Dy,=n-1forn=2,..,N+1.
4 Form,n>1,
D, ., +1
D, =min D, ,+1

5 0e=d, (XY <e
mi T\ e d, (X, Y)>e

The smallest edit distance between X and Y is then Dy yu.

The warping path through D that results in this smallest edit distance is parameterized
by two sequences of the same length, ix and iy, and is a combination of “chess king”
moves:

+ Vertical moves: (m,n) — (m + 1,n) corresponds to removing a sample from X or adding
a sample to Y. Each move increases the edit distance by 1.

+ Horizontal moves: (m,n) — (m,n + 1) corresponds to removing a sample from Y or
adding a sample to X. Each move increases the edit distance by 1.

+ Diagonal moves: (m,n) — (m + 1,n + 1) corresponds to a match if d,, ,X,Y) < e or
corresponds to removing one sample from each signal if d,, ,(X,Y) > ¢. Matches do not
increase the distance. Removals increase it by 1.

This structure ensures that any acceptable path aligns the complete signals, does not
skip samples, and does not repeat signal features. Additionally, a desirable path runs
close to the diagonal line extended between d; ;(X,Y) and dy; 4X,Y). This extra
constraint, adjusted by the maxsamp argument, ensures that the warping compares
sections of similar length.

1-515

1 Functions — Alphabetical List

1-516

The penalty for making two samples match is independent of the difference in value
between the samples. Two samples that differ by a little more than the tolerance incur
the same penalty as two samples that are markedly different. For that reason, the edit
distance is not affected by outliers. Conversely, repeating samples to align two signals
has a cost, which is not the case with dynamic time warping.

References

[1] Chen, Lei, M. Tamer Ozsu, and Vincent Oria. “Robust and Fast Similarity Search for
Moving Object Trajectories.” Proceedings of 24th ACM International Conference
on Management of Data (SIGMOD ‘05). 2005, pp. 491-502.

[2] Sakoe, Hiroaki, and Seibi Chiba. “Dynamic Programming Algorithm Optimization for
Spoken Word Recognition.” IEEE Transactions on Acoustics, Speech, and Signal
Processing. Vol. ASSP-26, No. 1, 1978, pp. 43—49.

[3] Paliwal, K. K., Anant Agarwal, and Sarvajit S. Sinha. “A Modification over Sakoe and

Chiba’s Dynamic Time Warping Algorithm for Isolated Word Recognition.”
Signal Processing. Vol. 4, 1982, pp. 329-333.

See Also

alignsignals | dtw | finddelay | findsignal | xcorr

Introduced in R2016b

ellip

ellip

Elliptic filter design

Syntax

[b,a] = ellip(n,Rp,Rs,Wp)
= ellip(n,Rp,Rs,Wp, ftype)

52
©
|

[z,p, k] = ellip()

[A,B,C,D] = ellj—p (.)

[1 =ellip(___ ,'s")

Description

[b,a] = ellip(n,Rp,Rs,Wp) returns the transfer function coefficients of an nth-order

lowpass digital elliptic filter with normalized passband edge frequency Wp. The resulting
filter has Rp decibels of peak-to-peak passband ripple and Rs decibels of stopband
attenuation down from the peak passband value.

[b,a] = ellip(n,Rp,Rs,Wp, ftype) designs a lowpass, highpass, bandpass, or
bandstop elliptic filter, depending on the value of ftype and the number of elements of
Wp. The resulting bandpass and bandstop designs are of order 2n.

Note: See “Limitations” on page 1-528 for information about numerical issues that
affect forming the transfer function.

[z,p, k] = ellip() designs a lowpass, highpass, bandpass, or bandstop digital

elliptic filter and returns its zeros, poles, and gain. This syntax can include any of the
input arguments in previous syntaxes.

[A,B,C,D] = ellip() designs a lowpass, highpass, bandpass, or bandstop digital

elliptic filter and returns the matrices that specify its state-space representation.

1-517

1 Functions — Alphabetical List

1-518

[] = ellip(, 's') designs a lowpass, highpass, bandpass, or bandstop

analog elliptic filter with passband edge angular frequency Wp, Rp decibels of passband
ripple, and Rs decibels of stopband attenuation.

Examples

Lowpass Elliptic Transfer Function

Design a 6th-order lowpass elliptic filter with 5 dB of passband ripple, 40 dB of stopband
attenuation, and a passband edge frequency of 300 Hz, which, for data sampled at 1000

Hz, corresponds to 0.6x rad/sample. Plot its magnitude and phase responses. Use it to
filter a 1000-sample random signal.

[b,a] = ellip(6,5,40,0.6);
freqgz (b, a)

ellip

Magnitude (dB)

Fhase (degrees)

=50

=100

200

-200

400

-600

- Iﬁ'a(_ \. /"f__ .

Mormalized Frequency (= rad/sample)

dataIn = randn(1000,1);
dataOut = filter(b,a,dataln);

Bandstop Elliptic Filter

0 0.1 02 03 04 05 06 07 08 09 1
Mormalized Frequency (= rad/sample)
i E— I — 1
-
0 0.1 02 03 04 05 06 07 08 09 1

Design a 6th-order elliptic bandstop filter with normalized edge frequencies of 0.27 ana

0.6x rad/sample, 5 dB of passband ripple, and 50 dB of stopband attenuation. Plot its
magnitude and phase responses. Use it to filter random data.

[b,a] = ellip(3,5,50,[0.2 0.6], "'stop");

freqz (b, a)

1-519

1 Functions — Alphabetical List

Magnitude (dB)
¢n
o

il

=100
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mormalized Frequency (= rad/sample)

0.9

4':”} T T T T T T T T

200 _‘ __"'_.

=200

Fhase (degrees)
o

—4':“} i i i i i i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mormalized Frequency (= rad/sample)

dataIn = randn(1000,1);
dataOut = filter(b,a,dataln);

Highpass Elliptic Filter

Design a 6th-order highpass elliptic filter with a passband edge frequency of 300 Hz,

which, for data sampled at 1000 Hz, corresponds to 0.6x rad/sample. Specify 3 dB of
passband ripple and 50 dB of stopband attenuation. Plot the magnitude and phase
responses. Convert the zeros, poles, and gain to second-order sections for use by fvtool.

1-520

0.9

ellip

Magnitude (dB)

[z,p, k] = ellip(6,3,50,300/500, "high'");
sos = zp2sos(z,p,k);
fvtool (sos, 'Analysis', 'freqg'")

Magnitude Response (dB) and Phase Response

i
el
=
T
o

L
(=

T\ ,/\ '|\| AN
f
|

i
on
(=1

:|

I

I

.

/

\ III

\ |
1 I
I| II 1 1 J 1 1 1

70 [,

N ST T

B.637

0.3 0.4 0.5 0.6 0.7 0.8
Mormalized Frequency (=7 rad/sample)

Bandpass Elliptic Filter

f.387

6.076

4.796

3.515

2.235

0.954

-0.326

Fhase (radians)

Design a 20th-order elliptic bandpass filter with a lower passband frequency of 500 Hz
and a higher passband frequency of 560 Hz. Specify a passband ripple of 3 dB, a

stopband attenuation of 40 dB, and a sample rate of 1500 Hz. Use the state-space

representation. Design an identical filter using designfilt.

1-521

1 Functions — Alphabetical List

[A,B,C,D]
d

ellip(10,3,40, [500 560]1/750);
designfilt ('bandpassiir', 'FilterOrder', 20,

'PassbandFrequencyl', 500, 'PassbandFrequency?2', 560,
'PassbandRipple’, 3,
'StopbandAttenuationl', 40, 'StopbandAttenuation2', 40,
'SampleRate',1500) ;

Convert the state-space representation to second-order sections. Visualize the frequency

responses using fvtool.

sSos
fvt

ss2sos (A,B,C,D);
fvtool (sos,d, 'Fs',1500) ;

legend (fvt, 'ellip', 'designfilt")

Magnitude Response (dB)

=10

-30

-40

Magnitude (dB)

-a0

-60

_I—er i i

ellip
designfilt

100

1-522

200

300 400
Frequency (Hz)

500

600

00

ellip

Comparison of Analog IIR Lowpass Filters

Design a 5th-order analog Butterworth lowpass filter with a cutoff frequency of 2 GHz.

Multiply by 27 4o convert the frequency to radians per second. Compute the frequency
response of the filter at 4096 points.

n = 5;
f = 2e9;

[zb,pb,kb] = butter(n,2*pi*f, 's");
[bb,ab] = zp2tf (zb,pb,kb);
[hb,wb] = fregs(bb,ab,4096) ;

Design a 5th-order Chebyshev Type I filter with the same edge frequency and 3 dB of
passband ripple. Compute its frequency response.

[z1,pl, k1] = chebyl(n,3,2*pi*f,'s');
[bl,al] = zp2tf(zl,pl, kl);
[hl,wl] = fregs(bl,al,4096);

Design a 5th-order Chebyshev Type II filter with the same edge frequency and 30 dB of
stopband attenuation. Compute its frequency response.

[z2,p2,k2] = cheby2(n,30,2*%pi*f, "'s");
[b2,a2] = zp2tf(z2,p2,k2);
[h2,w2] = fregs(b2,a2,4096);

Design a 5th-order elliptic filter with the same edge frequency, 3 dB of passband ripple,
and 30 dB of stopband attenuation. Compute its frequency response.

[ze,pe,ke] = ellip(n,3,30,2*%pi*f, 's");
[be,ae] = zp2tf(ze,pe,ke);
[he,we] = fregs(be,ae,4096);

Plot the attenuation in decibels. Express the frequency in gigahertz. Compare the filters.

plot (wb/ (2e9*pi),mag2db (abs (hb)))
hold on

plot (wl/ (2e9*pi),mag2db (abs (hl)))
plot (w2/ (2e9*pi),mag2db (abs (h2)))
plot (we/ (2e9*pi),mag2db (abs (he)))
axis ([0 4 -40 5])

1-523

1 Functions — Alphabetical List

grid

xlabel ('Frequency (GHz)")

ylabel ('Attenuation (dB)"')

legend ('butter', 'chebyl', 'cheby2', 'ellip')

5 T T T T T T T
butter
cheby1| 7
cheby2
5 ellip _
—~-10F -
@
=2
§15] '
2 20 R 1
£ o
< \
25 | \ 1
.
a0 \\K f____
‘ |'I \ P
35 H >< y
—4'} i i i i i I|| i i
0 0.5 1 15 2 25 3 3.5 4

Frequency (GHz)

The Butterworth and Chebyshev Type II filters have flat passbands and wide transition
bands. The Chebyshev Type I and elliptic filters roll off faster but have passband ripple.
The frequency input to the Chebyshev Type II design function sets the beginning of the
stopband rather than the end of the passband.

1-524

ellip

Input Arguments

n — Filter order

integer scalar

Filter order, specified as an integer scalar.
Data Types: double

Rp — Peak-to-peak passband ripple
positive scalar

Peak-to-peak passband ripple, specified as a positive scalar expressed in decibels.

If your specification, £, is in linear units, you can convert it to decibels using

Data Types: double

Rs — Stopband attenuation
positive scalar

Stopband attenuation down from the peak passband value, specified as a positive scalar
expressed in decibels.

If your specification, £, is in linear units, you can convert it to decibels using Rs = —
20 logy,L.
Data Types: double

Wp — Passband edge frequency
scalar | two-element vector

Passband edge frequency, specified as a scalar or a two-element vector. The passband
edge frequency is the frequency at which the magnitude response of the filter is —

Rp decibels. Smaller values of passband ripple, Rp, and larger values of stopband
attenuation, Rs, both result in wider transition bands.

+ Ifwpis a scalar, then el1ip designs a lowpass or highpass filter with edge frequency
Wp.

1-525

1 Functions — Alphabetical List

1-526

If wp is the two-element vector [wl w2], where wl < w2, then el1lip designs a
bandpass or bandstop filter with lower edge frequency w1l and higher edge frequency
w2.

+ For digital filters, the passband edge frequencies must lie between 0 and 1, where 1

corresponds to the Nyquist rate—half the sample rate or ir rad/sample.

For analog filters, the passband edge frequencies must be expressed in radians per
second and can take on any positive value.

Data Types: double

ftype — Filter type
'"low' | 'bandpass' | '"high' | "stop'

Filter type, specified as one of the following:
* 'low' specifies a lowpass filter with passband edge frequency Wp. 'low' is the
default for scalar Wp.

* 'high' specifies a highpass filter with passband edge frequency Wp.

* 'bandpass' specifies a bandpass filter of order 2n if Wp is a two-element vector.
'bandpass' is the default when Wp has two elements.

* 'stop' specifies a bandstop filter of order 2n if Wp 1s a two-element vector.

Data Types: char

Output Arguments

b, a — Transfer function coefficients
row vectors

Transfer function coefficients of the filter, returned as row vectors of length n + 1 for
lowpass and highpass filters and 2n + 1 for bandpass and bandstop filters.

+ For digital filters, the transfer function is expressed in terms of b and a as

_B(@ b(l)+b(2)z 4+ 4b(n+1)z "

CAlz) a(l)+a(2)z 4 ta(n+1)z ™

H(z)

ellip

+ For analog filters, the transfer function is expressed in terms of b and a as

_B(s) _b(1)s"+b(2)s" T4 tDb(n+1)

H(s) = = T .
A(s) a(1)s"+a(2)s" +-+a(n+1)

Data Types: double

z,p,k — Zeros, poles, and gain
column vectors, scalar

Zeros, poles, and gain of the filter, returned as two column vectors of length n (2n for

bandpass and bandstop designs) and a scalar.

* For digital filters, the transfer function is expressed in terms of z, p, and k as
(1-z(L)z HA-z2)zHA-z(m)zh)

H(z)=% — -~ .
Q-p(l)yz)A-p(2)z27)—A-p(n)z)

* For analog filters, the transfer function is expressed in terms of z, p, and k as
(s=z(1))(s=z(2)):-(s=z(n))
(s=p (1)(s=p (2))-+-(s=p (n))

H(s) =k

Data Types: double

A,B,C,D — State-space matrices
matrices

State-space representation of the filter, returned as matrices. If m = n for lowpass and
highpass designs and m = 2n for bandpass and bandstop filters, then A is m X m, B is
mx1,Cislxm,andDis 1 X 1.

+ For digital filters, the state-space matrices relate the state vector x, the input u, and
the output y through

x(k+1) =nx(k)+Bulk)
y(k) = Cx(k)+Du(k).

+ For analog filters, the state-space matrices relate the state vector x, the input u, and
the output y through

x=Ax+Bu
y=Cx+Du.

1-527

1 Functions — Alphabetical List

1-528

Data Types: double

Definitions

Limitations

Numerical Instability of Transfer Function Syntax

In general, use the [z, p, k] syntax to design IIR filters. To analyze or implement your
filter, you can then use the [z, p, k] output with zp2sos. If you design the filter using
the [b, a] syntax, you might encounter numerical problems. These problems are due to
round-off errors and can occur for n as low as 4. The following example illustrates this

limitation.

n = 6;

Rp = 0.1;

Rs = 80;

Wn = [2.5e6 29e6]/500e6;

ftype = 'bandpass';

% Transfer Function design
[b,a] = ellip(n,Rp,Rs,Wn, ftype);

% Zero-Pole-Gain design
[z,p, k] = ellip(n,Rp,Rs,Wn, ftype);

sos = zp2sos(z,p,k);

% Plot and compare the results

J

% This filter is unstable

hfvt = fvtool (b, a,sos, 'FrequencyScale', "log');

legend (hfvt, 'TF Design', 'ZPK Design')

ellip

Magnitude (dB)

Magnitude Response (dB)
TF Design
gk ZPK Design
II
|
|
i |
: '.
20 - \
|
|
|
| |
-40 [1t {
{ | | II
| f I I|I
| { l
60 | | ; '.
I |
\ | l
|\ |
-A0 — | ‘ Mo -
K“«. _,n'/ J:’] | II I.- -__.I .-'__-
N (f |
\ | | | I ¥
-100 \f f | II'I
10°3 1072 107

Mormalized Frequency (=« rad/sample)

Algorithms

Elliptic filters offer steeper rolloff characteristics than Butterworth or Chebyshev filters,
but are equiripple in both the passband and the stopband. In general, elliptic filters meet

given performance specifications with the lowest order of any filter type.

ellip uses a five-step algorithm:

1

It finds the lowpass analog prototype poles, zeros, and gain using the function

ellipap.

1-529

1 Functions — Alphabetical List

1-530

2 It converts the poles, zeros, and gain into state-space form.

3 If required, it uses a state-space transformation to convert the lowpass filter to a
bandpass, highpass, or bandstop filter with the desired frequency constraints.

4 For digital filter design, it uses bilinear to convert the analog filter into a digital
filter through a bilinear transformation with frequency prewarping. Careful
frequency adjustment enables the analog filters and the digital filters to have the
same frequency response magnitude at Wp or wl and w2.

5 It converts the state-space filter back to transfer function or zero-pole-gain form, as
required.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™,

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not
change.

See Also

besself | butter | chebyl | cheby2 | designfilt | ellipap | ellipord |
filter | sosfilt

Introduced before R2006a

ellipap

ellipap

Elliptic analog lowpass filter prototype

Syntax

[z,p, k] = ellipap(n,Rp,Rs)
Description
[z,p,k] = ellipap (n,Rp,Rs) returns the zeros, poles, and gain of an order n elliptic

analog lowpass filter prototype, with Rp dB of ripple in the passband, and a stopband

Rs dB down from the peak value in the passband. The zeros and poles are returned in
length n column vectors z and p and the gain in scalar k. If n is odd, z is length n - 1. The
transfer function in factored zero-pole form is

2(s) 5 (s—2z1)(s—29)...(s—zn)

H = =
N ps) (s=p)s—pg)...(s = pyr)

Elliptic filters offer steeper rolloff characteristics than Butterworth and Chebyshev
filters, but they are equiripple in both the passband and the stopband. Of the four
classical filter types, elliptic filters usually meet a given set of filter performance
specifications with the lowest filter order.

ellipap sets the passband edge angular frequency o, of the elliptic filter to 1 for a

normalized result. The passband edge angular frequency is the frequency at which the
passband ends and the filter has a magnitude response of 10®/20,

Algorithms

ellipap uses the algorithm outlined in [1]. It employs e11ipke to calculate the
complete elliptic integral of the first kind and e11ipj to calculate Jacobi elliptic
functions.

1-531

1 Functions — Alphabetical List

References

[1] Parks, T. W., and C. S. Burrus. Digital Filter Design. New York: John Wiley & Sons,
1987, chap. 7.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™,

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not
change.

See Also

besselap | buttap | cheblap | cheb2ap | ellip

Introduced before R2006a

1-532

ellipord

ellipord

Minimum order for elliptic filters

Syntax

[n,Wp] = ellipord(Wp,Ws,Rp,Rs)
ellipord (Wp,Ws,Rp,Rs, 's")

)
=
'S

I

Description

ellipord calculates the minimum order of a digital or analog elliptic filter required to
meet a set of filter design specif